跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) angular(82) LLM(78) 大语言模型(63) 人工智能(53) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(33) Go基础(29) Python(24) Vue(22) Web开发(20) Web技术(19) 精选资源(19) 深度学习(19) Java(18) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) 安卓(11) 聊天机器人(10) typescript(10) 资料精选(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) ChatGPT(9) LLMOps(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) mlops(9) 安全(9) 全栈开发(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 软件架构(7) RAG(7) Go语言高级开发(7) AWS(7) C++(7) 数据科学(7) 智能体(6) whisper(6) Prisma(6) 隐私保护(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 提示工程(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) kafka(5) 推荐系统(5) WebAssembly(5) GameDev(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) nextjs(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) RAG架构(3) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) 语言模型(2) 可穿戴设备(2) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) 数据分析(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

【ChatBot】使用LangFlow构建LangChain智能体

基于LLM的智能体通过访问其可支配的LLM和工具来维护自主权

关于智能体的更多信息

LangChain智能体在一套可用工具的上下文中是自主的。现在,您可以通过使用LangFlow在GUI中构建LangChain智能体。

LangChain智能体在收到请求时会使用各种操作。采取行动后,智能体进入观察步骤,在那里他们分享一个想法。如果未达到最终答案,Agent会循环返回以选择不同的操作,以便更接近最终答案

智能体之所以有吸引力,是因为他们能够独立行动,不走预先确定的道路。

他们配备了一套工具,使他们能够响应这些工具范围内的任何请求。

这个执行管道使智能体能够独立地解决问题,可能需要多次迭代,直到达到所需的结果。

【QA系统】LLM驱动的QA系统的一种新的文档摘要索引

在这篇博客文章中,我们介绍了一种全新的LlamaIndex数据结构:文档摘要索引。我们描述了与传统的语义搜索相比,它如何有助于提供更好的检索性能,并举例说明。

出身背景

大型语言模型(LLM)的核心用例之一是对自己的数据进行问答。为此,我们将LLM与“检索”模型配对,该模型可以在知识语料库上执行信息检索,并使用LLM对检索到的文本执行响应合成。这个整体框架被称为检索增强生成。

如今,大多数构建LLM支持的QA系统的用户倾向于执行以下某种形式的操作:

  1. 获取源文档,将每个文档拆分为文本块
  2. 将文本块存储在矢量数据库中
  3. 在查询期间,通过嵌入相似性和/或关键字过滤器来检索文本块。
  4. 执行响应合成

由于各种原因,这种方法提供的检索性能有限。

【LLM】利用特定领域知识库中的LLM

通过RAG致富:利用LLM的力量,使用检索增强生成与您的数据对话

问ChatGPT一个关于“马拉松”一词起源的问题,它会准确地告诉你希罗多德是如何描述费迪皮德斯从马拉松到雅典完成的42公里传奇长跑的,然后筋疲力尽。

但我祖母的食谱清单呢?当然,我可以把这些食谱数字化,没问题。但是,如果我想根据冰箱里的食材、我最喜欢的颜色和我一天的心情,就准备哪顿饭提出建议,该怎么办?

让我们看看这是否有可能在不因精疲力竭而崩溃的情况下实现。

LLM,达到你的极限…并超越它们

LLM是一种大型语言模型。OpenAI的GPT-4是一个例子,Meta的LLamA是另一个例子。我们在这里有意识地选择使用一般LLM术语来指代这些模型。请记住:这些模型中的每一个都是在一组庞大的(公开可用的)数据上进行训练的。

到目前为止,已经清楚地表明,这些LLM对通用语言有着有意义的理解,并且他们能够(重新)产生与训练数据中存在的信息相关的信息。这就是为什么像ChatGPT这样的生成工具在回答LLM在培训过程中遇到的主题问题方面表现惊人。

【LLM】用LlamaIndex建立和评估QA保证体系

介绍

LlamaIndex(GPT Index)提供了一个将大型语言模型(LLM)与外部数据连接起来的接口。LlamaIndex提供了各种数据结构来索引数据,如列表索引、向量索引、关键字索引和树索引。它提供了高级API和低级API——高级API允许您仅用五行代码构建问题解答(QA)系统,而低级API允许您定制检索和合成的各个方面。

然而,将这些系统投入生产需要仔细评估整个系统的性能,即给定输入的输出质量。检索增强生成的评估可能具有挑战性,因为用户需要针对给定的上下文提出相关问题的数据集。为了克服这些障碍,LlamaIndex提供了问题生成和无标签评估模块。

在本博客中,我们将讨论使用问题生成和评估模块的三步评估过程:

  • 从文档生成问题
  • 使用LlamaIndex QueryEngine抽象生成问题的答案/源节点,该抽象管理LLM和数据索引之间的交互。
  • 评估问题(查询)、答案和源节点是否匹配/内联

【OpenAI】我如何使用OpenAI将公司的文档转化为可搜索数据库

以及如何对您的文档进行同样的处理

在过去的六个月里,我一直在一个初创公司Voxel51工作,该公司是开源计算机视觉工具包FiftyOne的创始人。作为一名机器学习工程师和开发人员,我的工作是倾听我们的开源社区,并为他们带来他们需要的东西——新功能、集成、教程、研讨会,你能想到的。

几周前,我们在FiftyOne中添加了对矢量搜索引擎和文本相似性查询的原生支持,这样用户就可以通过简单的自然语言查询在他们的(通常是海量的,包含数百万或数千万个样本)数据集中找到最相关的图像。

这让我们陷入了一个奇怪的境地:现在,使用开源FiftyOne的人可以通过自然语言查询轻松搜索数据集,但使用我们的文档仍然需要传统的关键字搜索。

我们有很多文档,这些文档有其优点和缺点。作为一名用户,我有时会发现,考虑到文档的数量,准确地找到我想要的内容需要比我想要的更多的时间。

【ChatGPT】如何在你的电脑上离线运行类似LLM的ChatGPT

目前市场上有许多人工智能玩家,包括ChatGPT、Google Bard、Bing人工智能聊天等等。然而,所有这些都需要你有互联网连接才能与人工智能交互。如果你想在电脑上安装类似的大型语言模型(LLM)并在本地使用它怎么办?一个人工智能聊天机器人,你可以在没有互联网连接的情况下私下使用。好吧,通过斯坦福大学发布的新羊驼模型,你可以接近这个现实。是的,你可以离线在你的电脑上运行类似ChatGPT的语言模型。因此,请注意,让我们继续学习如何在没有互联网的情况下在本地使用LLM。

在没有互联网的情况下本地运行类似于LLM的ChatGPT(私有且安全)

在这篇文章中,我提到了如何在没有互联网的情况下在本地PC上运行类似ChatGPT的LLM的所有内容。您可以展开下表,详细了解步骤。

目录

【ChatGPT】Hello Dolly:用开放模型民主化ChatGPT的魔力

总结

我们表明,任何人都可以使用高质量的训练数据,在一台机器上用30分钟对其进行训练,从而获得过时的开源大型语言模型(LLM),并赋予其神奇的ChatGPT般的指令跟随能力。令人惊讶的是,指令遵循似乎不需要最新或最大的模型:我们的模型只有60亿个参数,而GPT-3的参数为1750亿。我们为我们的模型(Dolly)开源代码,并展示如何在Databricks上重新创建它。我们相信,像Dolly这样的模特将有助于LLM的民主化,将它们从很少有公司能负担得起的东西转变为每个公司都可以拥有和定制的商品,以改进他们的产品。

出身背景

ChatGPT是一种专有的指令遵循模型,于2022年11月发布,风靡全球。该模型是根据网络上数万亿个单词进行训练的,需要大量的GPU来开发。这很快导致谷歌和其他公司发布了自己的专有指令遵循模型。2023年2月,Meta向学术研究人员发布了一组名为LLaMA的高质量(但不遵循指令)语言模型的权重,每个模型训练超过80000 GPU小时。然后,在三月份,斯坦福大学建立了Alpaca模型,该模型基于LLaMA,但调整了一个由50000个类似人类的问答组成的小数据集,令人惊讶的是,这使它表现出了类似ChatGPT的交互性。

【ChatGPT】新的开源ChatGPT克隆—称为Dolly

随着Databricks企业软件公司创建的Dolly大型语言模型(DLL)的发布,开源GPT聊天又向前迈出了一步。

新的ChatGPT克隆被称为多利,以该名称的著名绵羊命名,这是第一种被克隆的哺乳动物。

开源大型语言模型

Dolly LLM是日益增长的开源人工智能运动的最新表现,该运动旨在提供更多的技术访问权限,使其不被大公司垄断和控制。

推动开源人工智能运动的一个担忧是,企业可能不愿意将敏感数据交给控制人工智能技术的第三方。

基于开源

Dolly是由非营利的EleutherAI研究所创建的开源模型和斯坦福大学Alpaca模型创建的,后者本身是由Meta创建的650亿参数开源LLaMA模型创建的。

LLaMA代表大型语言模型元人工智能,是一种基于公开数据训练的语言模型。