跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) angular(83) LLM(78) 大语言模型(63) 人工智能(53) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(34) Go基础(29) Python(24) Vue(23) Web开发(20) Web技术(19) 精选资源(19) 深度学习(19) Java(18) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) 安卓(11) 聊天机器人(10) typescript(10) 资料精选(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) ChatGPT(9) LLMOps(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) mlops(9) 安全(9) 全栈开发(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 软件架构(7) RAG(7) Go语言高级开发(7) AWS(7) C++(7) 数据科学(7) 智能体(6) whisper(6) Prisma(6) 隐私保护(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 提示工程(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) kafka(5) 推荐系统(5) WebAssembly(5) GameDev(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) nextjs(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) RAG架构(3) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) 语言模型(2) 可穿戴设备(2) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) 数据分析(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

【推荐系统】LightFM是许多流行的推荐算法的Python实现,用于隐式和显式反馈。

LightFM是许多流行的推荐算法的Python实现,用于隐式和显式反馈。

它还可以将项目和用户元数据合并到传统的矩阵分解算法中。它将每个用户和项目表示为其特征的潜在表示的总和,从而允许推荐泛化到新项目(通过项目特征)和新用户(通过用户特征)。

该方法的细节在arXiv上提供的LightFM论文中进行了描述。

快速入门


如果你不耐烦,直接跳到Movielens快速入门。

安装


PyPI


使用pip从pypi安装:pip安装lightfm。在Linux、使用Homebrew Python的OSX和使用Miniconda的Windows上,一切都应该开箱即用。

OSX和Windows用户注意:默认情况下,LightFM在OSX和窗口上不使用OpenMP,因此所有型号配件都是单线程的。这是由于Clang(和Miniconda)不支持OpenMP,安装启用OpenMP的gcc版本既复杂又劳动密集。如果你想在这些平台上使用LightFM的多线程功能,你应该尝试通过Docker使用它,如下一节所述。

也不支持使用OSX中包含的默认Python发行版进行构建;请尝试Homebrew或Anaconda的版本。

【推荐系统】将两层推荐系统投入生产

推荐系统将始终保持相关性——用户希望看到个性化的内容,最好的目录(就我们的iFunny应用程序而言,是流行的表情包和笑话)。我们的团队正在测试数十个关于智能提要如何改善用户体验的假设。本文将告诉您我们是如何实现协作模型之上的第二级模型的:我们遇到了什么困难,以及它们是如何影响指标的。

通常,矩阵分解,如隐式分解。ALS用于帮助改善饲料。在这种方法中,对于每个用户和每个对象,我们都会得到嵌入,而嵌入最接近用户嵌入的内容(在余弦度量中)最终会出现在最受欢迎的推荐中。

该方法工作迅速,但没有考虑所有信息(例如,在矩阵分解中添加用户的性别和年龄将是一项挑战)。

两级推荐系统试图在不放弃“永恒经典”的情况下使用更复杂的算法

实施两层推荐系统

我们需要从各种算法中“组装”出一个顶级解决方案。我们拥有:

【LLM】RecAlign-社交媒体订阅源的智能内容过滤器

【编者按】这是田进的客串文章。我们强调这个应用程序,因为我们认为它是一个新颖的用例。具体而言,我们认为推荐系统在我们的日常生活中具有难以置信的影响力,关于LLM将如何影响这些系统,目前还没有大量的讨论。

我们都经历过使用推荐系统的痛苦:你注册了推特来跟上最新的人工智能研究,但点击一个有趣的模因会让你的时间线充满类似的分心。这些系统的作用是最大限度地提高所有者的利润,而不是你的福利。在这里,我们概述了我们以LangChain为动力的解决方案背后的基本原理,以解决其核心问题。

透明度和可配置性

在布莱恩·克里斯蒂安(Brian Christian)的《结盟问题》(the Alignment Problem)一书中,他分享了一则轶事:他的朋友正在从酒精成瘾中恢复,但推荐系统可能有点太了解他对酒精的热爱,并在他的推送中充斥着酒精广告。这一集生动地说明了一个反复出现的问题——推荐系统善于迎合我们今天的样子,但几乎没有给我们留下什么自由来决定我们想要成为什么样的人。目前的推荐系统缺乏透明度和可配置性。因此,我们很难识别推荐系统对我们的偏好做出的任何有问题的推断,更不用说修改它们了。

【推荐系统】真棒推荐系统论文

The topic of my dissertation is recommendation system. I collected some classic and awesome papers here. Good luck to every RecSys-learner.

Awesome Recommendation System Papers

My email is ZhangYuyang4d@163.com. If you find any mistakes, or you have some suggestions, just send a email to me.

By the way, the RecSys is one of the most important conference in recommendation.