【生成式AI】生成式AI为各职能领域提供创造价值的机会
生成式AI为各职能领域提供创造价值的机会
按职能划分的生成式AI应用场景(非详尽列举)
【观点】Anthropic的研究提供了一个清新且理性的关于AI的视角
Anthropic的研究提供了一个清新且理性的视角……
Anthropic的研究强调以实际应用和用例为导向的解决方案,尽可能简单,同时注重可解释性、可观察性和可检查性。
它警告不要在不了解其内部工作原理的情况下采用某些框架,因为这可能导致意想不到的行为。
尽管AI代理有其用处,但它们并非总是最佳解决方案——工作流往往更加合适。
有些公司可能推销特定的框架来销售其技术堆栈,而忽视最佳实践,或者在实现业务目标时妥协,未选择最优化和最合适的路径。
他们的主要观察是,最成功的实施往往避免使用复杂的框架或专业库,而是倾向于选择简单、可组合的模式。
在使用大型语言模型(LLM)时,他们建议从最简单的解决方案开始,只有在必要时才增加复杂度。
有时候,这意味着根本不构建代理系统,因为这些系统通常通过牺牲延迟和成本来换取更好的任务执行效果,而这一权衡应该仔细考虑。
【观点】Meta的Yann LeCun预测,在五年内将出现“AI架构的新范式”,并且将迎来“机器人技术的十年”。
Meta的首席AI科学家Yann LeCun表示,在未来三到五年内,将会出现“AI架构的新范式”,这一新范式将远远超越现有AI系统的能力。
LeCun还预测,未来几年可能是“机器人技术的十年”,AI与机器人技术的进步将结合起来,释放出一种新的智能应用类别。
在周四的达沃斯“技术辩论”环节上,LeCun表示,目前我们所拥有的“AI范式”——即生成式AI和大型语言模型(LLM)——实际上并未达到太多的能力。它们确实有用,但在许多方面仍存在局限。
LeCun说道:“我认为当前[LLM]范式的使用寿命相对较短,可能只有三到五年。我认为五年后,没有人会再把它们作为AI系统的核心组件使用,至少不会像现在这样使用。我认为……我们将会看到一种新的AI架构范式的出现,这种架构可能没有当前AI系统的局限。”
这些“局限”阻碍了机器实现真正智能的行为,LeCun解释道,主要有四个关键原因:缺乏对物理世界的理解;缺乏持久记忆;缺乏推理能力;缺乏复杂的规划能力。
“LLM实际上无法做这些事情,”LeCun说。“所以,在接下来的几年里,AI将会经历另一次革命。我们可能得改变它的名字,因为它可能不再像今天我们理解的那样是生成式的。”
“世界模型”
[大语言模型] Mistral 7B 模型介绍
Mistral人工智能团队很自豪地发布了Mistral 7B,这是迄今为止最强大的语言模型。
Mistral 7B 简述
Mistral 7B是一个7.3B参数模型,它:
- 在所有基准测试中均超过Llama 2 13B
- 在许多基准测试中表现超过Llama 1 34B
- 接近CodeLlama 7B的代码性能,同时保持良好的英语任务
- 使用分组查询注意力(GQA)进行更快的推理
- 使用滑动窗口注意力(SWA)以较小的成本处理较长的序列
- 我们将在Apache 2.0许可证下发布Mistral 7B,它可以不受限制地使用。
- 下载它并在任何地方(包括本地)使用我们的参考实现,
- 使用vLLM推理服务器和skypilot在任何云(AWS/GCP/Azure)上部署它,
- 在HuggingFace上使用。
Mistral 7B很容易在任何任务中进行微调。作为演示,我们提供了一个针对聊天进行微调的模型,它的性能优于Llama 2 13B聊天。
【MLOps】使用Ray缩放AI
Ray正在人工智能工程领域崭露头角,对扩展LLM和RL至关重要
Spark在数据工程中几乎是必不可少的。Ray正在人工智能工程领域崭露头角。
雷是伦敦大学学院Spark的继任者。Spark和Ray有很多相似之处,例如用于计算的统一引擎。但Spark主要专注于大规模数据分析,而Ray则是为机器学习应用程序设计的。
在这里,我将介绍Ray,并介绍如何使用Ray扩展大型语言模型(LLM)和强化学习(RL),然后总结Ray的怀旧和趋势。
Ray简介
Ray是一个开源的统一计算框架,可以轻松扩展人工智能和Python的工作负载,从强化学习到深度学习,再到模型调整和服务。
下面是Ray的最新架构。它主要有三个组件:Ray Core、Ray AI Runtime和Storage and Tracking。