跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) angular(83) LLM(78) 大语言模型(63) 人工智能(53) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(34) Go基础(29) Python(24) Vue(23) Web开发(20) Web技术(19) 精选资源(19) 深度学习(19) Java(18) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) 安卓(11) 聊天机器人(10) typescript(10) 资料精选(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) ChatGPT(9) LLMOps(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) mlops(9) 安全(9) 全栈开发(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 软件架构(7) RAG(7) Go语言高级开发(7) AWS(7) C++(7) 数据科学(7) 智能体(6) whisper(6) Prisma(6) 隐私保护(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 提示工程(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) kafka(5) 推荐系统(5) WebAssembly(5) GameDev(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) nextjs(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) RAG架构(3) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) 语言模型(2) 可穿戴设备(2) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) 数据分析(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

[编者按]:这是杰克·西蒙的客串帖子,他最近参加了威廉姆斯学院的黑客马拉松。他构建了一个由LangChain驱动的聊天机器人,重点关注阑尾癌症,旨在让有需要的人更容易获得专业知识。如果你有兴趣为另一种罕见的情况构建聊天机器人,请联系jms9@williams.edu.

我们之所以强调这一点,是因为我们认为这是问答系统的一个极好且不受重视的用例。虽然底层技术可能与其他问答应用程序类似,但我们发现这种用例对社会的影响特别大。

上周,我参加了威廉姆斯学院的一场黑客马拉松,在那里我建立了一个聊天机器人,它改变了我们获取罕见疾病信息的方式。通过结合文献综述、临床试验数据和学术论文,我创建了一个由LangChain驱动的聊天机器人,它可以提供有关一种特殊罕见疾病——阑尾癌症的宝贵信息。

 


虽然这个演示侧重于一种罕见的疾病,但我计划通过添加尽可能多的罕见疾病信息来扩展聊天机器人的知识库。最终愿景是创建一个人工智能驱动的应用程序,为患者和医疗保健专业人员提供可靠的信息来源。

罕见的情况往往会让患者被隔离,没有适当的指导,主要是因为只有少数专家专门研究这些情况。此外,这些专业人员往往忙于工作,几乎没有时间与个别患者接触。几乎没有可用的在线资源,大多数都是用医学术语编写的,这使得患者很难理解这些信息。不幸的是,ChatGPT对罕见的情况没有帮助;尽管该模型是在大规模的网络规模数据集上训练的,但不太常见的情况下的大多数相关信息要么没有包括在内,要么过于稀疏,模型无法了解太多。因此,ChatGPT的回应是不完整的,而且往往是明显错误的。

鉴于这些挑战,我使用了检索增强生成(RAG)方法,利用多种知识来源——这些知识来源被烘焙到模型参数中,以及上下文段落中包含的信息——来设计一个似乎优于GPT-4的模型,以及Bio_ClinicalBERT、BioBERT、BlueBERT、PubMedBERT,和SciBERT的任务需要关于阑尾癌症的特定知识。

检索增强生成是一种NLP体系结构,它使用外部文档来补充其知识。RAG方法通过访问更细粒度的数据,甚至是在基本模型训练期间不可用的数据,提供了显著的优势。该方法涉及从外部数据集检索上下文文档,例如执行过程中的文献综述、临床试验信息和学术论文语料库。然后,模型将这些上下文文档与原始输入相结合,以生成输出。

尽管现有模型和数据集在提供有关常见疾病的更具体信息方面取得了进展,但它们很难为患者少于1000人的病例提供必要的信息。这是因为他们缺乏足够的临床试验、社区支持论坛和罕见疾病专家从业者的详细信息。与这些限制相关的挑战源于训练这些模型的高昂成本,以及目前大规模收集罕见条件下的综合数据的不可行性。

通过构建一个可以访问和理解大量医学文献的聊天机器人,我们可以弥合患者与他们所需知识之间的差距。这种人工智能驱动的方法不仅实用,而且在革命性医疗保健方面也很有吸引力。

随着人工智能和LangChain等开源大型语言模型框架的进步,围绕罕见疾病的信息问题现在可以得到解决。

我构建的聊天机器人证明了这样一个工具可以用来帮助患者和医疗保健专业人员。通过扩大聊天机器人的知识库,以涵盖更罕见的情况,我计划创建一个平台,提供有价值的见解和信息,而不会用复杂的医学术语淹没患者和家人。

我相信人工智能聊天机器人有潜力显著改善医疗保健行业,尤其是在罕见疾病领域。随着我们继续开发和完善这些人工智能驱动的工具,我们可以创建一个更易于访问和包容的医疗保健系统,为患者和医疗保健专业人员赋权。

如果你有兴趣了解更多关于这个项目的信息或参与其中,请通过电子邮件或推特联系我。我们可以共同努力,让人们更容易获得有关罕见疾病的信息,并最终改善受这些疾病影响的人的生活。