跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) angular(83) LLM(79) 大语言模型(63) 人工智能(53) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(34) Go基础(29) Python(24) Vue(23) Web开发(20) Web技术(19) 精选资源(19) 深度学习(19) Java(18) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) 安卓(11) 聊天机器人(10) typescript(10) 资料精选(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) ChatGPT(9) LLMOps(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) mlops(9) 安全(9) 全栈开发(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 软件架构(7) RAG(7) Go语言高级开发(7) AWS(7) C++(7) 数据科学(7) 智能体(6) whisper(6) Prisma(6) 隐私保护(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 提示工程(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) kafka(5) 推荐系统(5) WebAssembly(5) GameDev(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) nextjs(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) RAG架构(4) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) 语言模型(2) 可穿戴设备(2) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) 数据分析(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

A curated list of fraud detection papers from the following conferences:

Similar collections about graph classificationclassification/regression treegradient boostingMonte Carlo tree search, and community detection papers with implementations.

2022

  • Active Learning for Human-in-the-loop Customs Inspection (TKDE 2022)

    • Sundong Kim, Tung-Duong Mai, Thi Nguyen Duc Khanh, Sungwon Han, Sungwon Park, Karandeep Singh, Meeyoung Cha
    • [Paper]
    • [Code]
  • Knowledge Sharing via Domain Adaptation in Customs Fraud Detection (AAAI 2022)

    • Sungwon Park, Sundong Kim, Meeyoung Cha
    • [Paper]

2021

  • Towards Consumer Loan Fraud Detection: Graph Neural Networks with Role-Constrained Conditional Random Field (AAAI 2021)

    • Bingbing Xu, Huawei Shen, Bing-Jie Sun, Rong An, Qi Cao, Xueqi Cheng
    • [Paper]
  • Modeling the Field Value Variations and Field Interactions Simultaneously for Fraud Detection (AAAI 2021)

    • Dongbo Xi, Bowen Song, Fuzhen Zhuang, Yongchun Zhu, Shuai Chen, Tianyi Zhang, Yuan Qi, Qing He
    • [Paper]
  • IFDDS: An Anti-fraud Outbound Robot (AAAI 2021)

    • Zihao Wang, Minghui Yang, Chunxiang Jin, Jia Liu, Zujie Wen, Saishuai Liu, Zhe Zhang
    • [Paper]
  • Modeling Heterogeneous Graph Network on Fraud Detection: A Community-based Framework with Attention Mechanism (CIKM 2021)

    • Li Wang, Peipei Li, Kai Xiong, Jiashu Zhao, Rui Lin
    • [Paper]
  • Fraud Detection under Multi-Sourced Extremely Noisy Annotations (CIKM 2021)

    • Chuang Zhang, Qizhou Wang, Tengfei Liu, Xun Lu, Jin Hong, Bo Han, Chen Gong
    • [Paper]
  • Adversarial Reprogramming of Pretrained Neural Networks for Fraud Detection (CIKM 2021)

    • Lingwei Chen, Yujie Fan, Yanfang Ye
    • [Paper]
  • Fine-Grained Element Identification in Complaint Text of Internet Fraud (CIKM 2021)

    • Tong Liu, Siyuan Wang, Jingchao Fu, Lei Chen, Zhongyu Wei, Yaqi Liu, Heng Ye, Liaosa Xu, Weiqiang Wang, Xuanjing Huang
    • [Paper]
  • Could You Describe the Reason for the Transfer: A Reinforcement Learning Based Voice-Enabled Bot Protecting Customers from Financial Frauds (CIKM 2021)

    • Zihao Wang, Fudong Wang, Haipeng Zhang, Minghui Yang, Shaosheng Cao, Zujie Wen, Zhe Zhang
    • [Paper]
  • Online Credit Payment Fraud Detection via Structure-Aware Hierarchical Recurrent Neural Network (IJCAI 2021)

    • Wangli Lin, Li Sun, Qiwei Zhong, Can Liu, Jinghua Feng, Xiang Ao, Hao Yang
    • [Paper]
  • Intention-aware Heterogeneous Graph Attention Networks for Fraud Transactions Detection (KDD 2021)

    • Can Liu, Li Sun, Xiang Ao, Jinghua Feng, Qing He, Hao Yang
    • [Paper]
  • Live-Streaming Fraud Detection: A Heterogeneous Graph Neural Network Approach (KDD 2021)

    • Haishuai Wang, Zhao Li, Peng Zhang, Jiaming Huang, Pengrui Hui, Jian Liao, Ji Zhang, Jiajun Bu
    • [Paper]
  • Customs Fraud Detection in the Presence of Concept Drift (IncrLearn@ICDM 2021)

    • Tung-Duong Mai, Kien Hoang, Aitolkyn Baigutanova, Gaukhartas Alina, Sundong Kim
    • [Paper]
  • Pick and Choose: A GNN-based Imbalanced Learning Approach for Fraud Detection (WWW 2021)

    • Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang, Qing He
    • [Paper]

2020

  • Spatio-Temporal Attention-Based Neural Network for Credit Card Fraud Detection (AAAI 2020)

    • Dawei Cheng, Sheng Xiang, Chencheng Shang, Yiyi Zhang, Fangzhou Yang, Liqing Zhang
    • [Paper]
  • FlowScope: Spotting Money Laundering Based on Graphs (AAAI 2020)

    • Xiangfeng Li, Shenghua Liu, Zifeng Li, Xiaotian Han, Chuan Shi, Bryan Hooi, He Huang, Xueqi Cheng
    • [Paper]
    • [Code]
  • Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged Fraudsters (CIKM 2020)

    • Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, Philip S. Yu
    • [Paper]
    • [Code]
  • Loan Default Analysis with Multiplex Graph Learning (CIKM 2020)

    • Binbin Hu, Zhiqiang Zhang, Jun Zhou, Jingli Fang, Quanhui Jia, Yanming Fang, Quan Yu, Yuan Qi
    • [Paper]
  • Error-Bounded Graph Anomaly Loss for GNNs (CIKM 2020)

    • Tong Zhao, Chuchen Deng, Kaifeng Yu, Tianwen Jiang, Daheng Wang, Meng Jiang
    • [Paper]
    • [Code]
  • BotSpot: A Hybrid Learning Framework to Uncover Bot Install Fraud in Mobile Advertising (CIKM 2020)

    • Tianjun Yao, Qing Li, Shangsong Liang, Yadong Zhu
    • [Paper]
    • [Code]
  • Early Fraud Detection with Augmented Graph Learning (DLG@KDD 2020)

    • Tong Zhao, Bo Ni, Wenhao Yu, Meng Jiang
    • [Paper]
  • NAG: Neural Feature Aggregation Framework for Credit Card Fraud Detection (ICDM 2020)

    • Kanishka Ghosh Dastidar, Johannes Jurgovsky, Wissam Siblini, Liyun He-Guelton, Michael Granitzer
    • [Paper]
  • Heterogeneous Mini-Graph Neural Network and Its Application to Fraud Invitation Detection (ICDM 2020)

    • Yong-Nan Zhu, Xiaotian Luo, Yu-Feng Li, Bin Bu, Kaibo Zhou, Wenbin Zhang, Mingfan Lu
    • [Paper]
  • Collaboration Based Multi-Label Propagation for Fraud Detection (IJCAI 2020)

    • Haobo Wang, Zhao Li, Jiaming Huang, Pengrui Hui, Weiwei Liu, Tianlei Hu, Gang Chen
    • [Paper]
  • The Behavioral Sign of Account Theft: Realizing Online Payment Fraud Alert (IJCAI 2020)

  • Federated Meta-Learning for Fraudulent Credit Card Detection (IJCAI 2020)

    • Wenbo Zheng, Lan Yan, Chao Gou, Fei-Yue Wang
    • [Paper]
  • Robust Spammer Detection by Nash Reinforcement Learning (KDD 2020)

    • Yingtong Dou, Guixiang Ma, Philip S. Yu, Sihong Xie
    • [Paper]
    • [Code]
  • DATE: Dual Attentive Tree-aware Embedding for Customs Fraud Detection (KDD 2020)

    • Sundong Kim, Yu-Che Tsai, Karandeep Singh, Yeonsoo Choi, Etim Ibok, Cheng-Te Li, Meeyoung Cha
    • [Paper]
    • [Code]
  • Fraud Transactions Detection via Behavior Tree with Local Intention Calibration (KDD 2020)

    • Can Liu, Qiwei Zhong, Xiang Ao, Li Sun, Wangli Lin, Jinghua Feng, Qing He, Jiayu Tang
    • [Paper]
  • Interleaved Sequence RNNs for Fraud Detection (KDD 2020)

    • Bernardo Branco, Pedro Abreu, Ana Sofia Gomes, Mariana S. C. Almeida, João Tiago Ascensão, Pedro Bizarro
    • [Paper]
  • GCN-Based User Representation Learning for Unifying Robust Recommendation and Fraudster Detection (SIGIR 2020)

    • Shijie Zhang, Hongzhi Yin, Tong Chen, Quoc Viet Nguyen Hung, Zi Huang, Lizhen Cui
    • [Paper]
  • Alleviating the Inconsistency Problem of Applying Graph Neural Network to Fraud Detection (SIGIR 2020)

    • Zhiwei Liu, Yingtong Dou, Philip S. Yu, Yutong Deng, Hao Peng
    • [Paper]
    • [Code]
  • Friend or Faux: Graph-Based Early Detection of Fake Accounts on Social Networks (WWW 2020)

    • Adam Breuer, Roee Eilat, Udi Weinsberg
    • [Paper]
  • Financial Defaulter Detection on Online Credit Payment via Multi-view Attributed Heterogeneous Information Network (WWW 2020)

    • Qiwei Zhong, Yang Liu, Xiang Ao, Binbin Hu, Jinghua Feng, Jiayu Tang, Qing He
    • [Paper]
  • ASA: Adversary Situation Awareness via Heterogeneous Graph Convolutional Networks (WWW 2020)

    • Rui Wen, Jianyu Wang, Chunming Wu, Jian Xiong
    • [Paper]
  • Modeling Users' Behavior Sequences with Hierarchical Explainable Network for Cross-domain Fraud Detection (WWW 2020)

    • Yongchun Zhu, Dongbo Xi, Bowen Song, Fuzhen Zhuang, Shuai Chen, Xi Gu, Qing He
    • [Paper]

2019

  • SliceNDice: Mining Suspicious Multi-attribute Entity Groups with Multi-view Graphs (DSAA 2019)

  • FARE: Schema-Agnostic Anomaly Detection in Social Event Logs (DSAA 2019)

  • Cash-Out User Detection Based on Attributed Heterogeneous Information Network with a Hierarchical Attention Mechanism (AAAI 2019)

    • Binbin Hu, Zhiqiang Zhang, Chuan Shi, Jun Zhou, Xiaolong Li, Yuan Qi
    • [Paper]
    • [Code]
  • GeniePath: Graph Neural Networks with Adaptive Receptive Paths (AAAI 2019)

    • Ziqi Liu, Chaochao Chen, Longfei Li, Jun Zhou, Xiaolong Li, Le Song, Yuan Qi
    • [Paper]
    • [Code]
  • SAFE: A Neural Survival Analysis Model for Fraud Early Detection (AAAI 2019)

  • One-Class Adversarial Nets for Fraud Detection (AAAI 2019)

    • Panpan Zheng, Shuhan Yuan, Xintao Wu, Jun Li, Aidong Lu
    • [Paper]
    • [Code]
  • Uncovering Download Fraud Activities in Mobile App Markets (ASONAM 2019)

    • Yingtong Dou, Weijian Li, Zhirong Liu, Zhenhua Dong, Jiebo Luo, Philip S. Yu
    • [Paper]
  • Spam Review Detection with Graph Convolutional Networks (CIKM 2019)

    • Ao Li, Zhou Qin, Runshi Liu, Yiqun Yang, Dong Li
    • [Paper]
    • [Code]
  • Key Player Identification in Underground Forums Over Attributed Heterogeneous Information Network Embedding Framework (CIKM 2019)

    • Yiming Zhang, Yujie Fan, Yanfang Ye, Liang Zhao, Chuan Shi
    • [Paper]
    • [Code]
  • CatchCore: Catching Hierarchical Dense Subtensor (ECML-PKDD 2019)

    • Wenjie Feng, Shenghua Liu, Huawei Shen, and Xueqi Cheng
    • [Paper]
    • [Code]
  • Spotting Collective Behaviour of Online Frauds in Customer Reviews (IJCAI 2019)

    • Sarthika Dhawan, Siva Charan Reddy Gangireddy, Shiv Kumar, Tanmoy Chakraborty
    • [Paper]
    • [Code]
  • A Semi-Supervised Graph Attentive Network for Fraud Detection (ICDM 2019)

    • Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang, Quan Yu, Jun Zhou, Shuang Yang, and Qi Yuan
    • [Paper]
    • [Code]
  • EigenPulse: Detecting Surges in Large Streaming Graphs with Row Augmentation (PAKDD 2019)

    • Jiabao Zhang, Shenghua Liu, Wenjian Yu, Wenjie Feng, Xueqi Cheng
    • [Paper]
  • Uncovering Insurance Fraud Conspiracy with Network Learning (SIGIR 2019)

    • Chen Liang, Ziqi Liu, Bin Liu, Jun Zhou, Xiaolong Li, Shuang Yang, Yuan Qi
    • [Paper]
  • A Contrast Metric for Fraud Detection in Rich Graphs (TKDE 2019)

    • Shenghua Liu, Bryan Hooi, Christos Faloutsos
    • [Paper]
  • Think Outside the Dataset: Finding Fraudulent Reviews using Cross-Dataset Analysis (WWW 2019)

    • Shirin Nilizadeh, Hojjat Aghakhani, Eric Gustafson, Christopher Kruegel, Giovanni Vigna
    • [Paper]
  • Securing the Deep Fraud Detector in Large-Scale E-Commerce Platform via Adversarial Machine Learning Approach (WWW 2019)

    • Qingyu Guo, Zhao Li, Bo An, Pengrui Hui, Jiaming Huang, Long Zhang, Mengchen Zhao
    • [Paper]
  • No Place to Hide: Catching Fraudulent Entities in Tensors (WWW 2019)

    • Yikun Ban, Xin Liu, Ling Huang, Yitao Duan, Xue Liu, Wei Xu
    • [Paper]
  • FdGars: Fraudster Detection via Graph Convolutional Networks in Online App Review System (WWW 2019)

2018

  • Heterogeneous Graph Neural Networks for Malicious Account Detection (CIKM 2018)

    • Ziqi Liu, Chaochao Chen, Xinxing Yang, Jun Zhou, Xiaolong Li, and Le Song
    • [Paper]
    • [Code]
  • Reinforcement Mechanism Design for Fraudulent Behaviour in e-Commerce (AAAI 2018)

    • Qingpeng Cai, Aris Filos-Ratsikas, Pingzhong Tang, Yiwei Zhang
    • [Paper]
  • Adapting to Concept Drift in Credit Card Transaction Data Streams Using Contextual Bandits and Decision Trees (AAAI 2018)

    • Dennis J. N. J. Soemers, Tim Brys, Kurt Driessens, Mark H. M. Winands, Ann Nowé
    • [Paper]
  • Nextgen AML: Distributed Deep Learning Based Language Technologies to Augment Anti Money Laundering Investigation(ACL 2018)

    • Jingguang Han, Utsab Barman, Jeremiah Hayes, Jinhua Du, Edward Burgin, Dadong Wan
    • [Paper]
  • Preserving Privacy of Fraud Detection Rule Sharing Using Intel's SGX (CIKM 2018)

    • Daniel Deutch, Yehonatan Ginzberg, Tova Milo
    • [Paper]
  • Deep Structure Learning for Fraud Detection (ICDM 2018)

    • Haibo Wang, Chuan Zhou, Jia Wu, Weizhen Dang, Xingquan Zhu, Jilong Wang
    • [Paper]
  • Learning Sequential Behavior Representations for Fraud Detection (ICDM 2018)

    • Jia Guo, Guannan Liu, Yuan Zuo, Junjie Wu
    • [Paper]
  • Impression Allocation for Combating Fraud in E-commerce Via Deep Reinforcement Learning with Action Norm Penalty (IJCAI 2018)

    • Mengchen Zhao, Zhao Li, Bo An, Haifeng Lu, Yifan Yang, Chen Chu
    • [Paper]
  • Tax Fraud Detection for Under-Reporting Declarations Using an Unsupervised Machine Learning Approach (KDD 2018)

    • Daniel de Roux, Boris Perez, Andrés Moreno, María-Del-Pilar Villamil, César Figueroa
    • [Paper]
  • Collective Fraud Detection Capturing Inter-Transaction Dependency (KDD 2018)

    • Bokai Cao, Mia Mao, Siim Viidu, Philip Yu
    • [Paper]
  • Fraud Detection with Density Estimation Trees (KDD 2018)

    • Fraud Detection with Density Estimation Trees
    • [Paper]
  • Real-time Constrained Cycle Detection in Large Dynamic Graphs (VLDB 2018)

    • Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin, Jingren Zhou
    • [Paper]
  • REV2: Fraudulent User Prediction in Rating Platforms (WSDM 2018)

    • Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, V. S. Subrahmanian
    • [Paper]
    • [Code]
  • Exposing Search and Advertisement Abuse Tactics and Infrastructure of Technical Support Scammers (WWW 2018)

    • Bharat Srinivasan, Athanasios Kountouras, Najmeh Miramirkhani, Monjur Alam, Nick Nikiforakis, Manos Antonakakis, Mustaque Ahamad
    • [Paper]

2017

  • ZooBP: Belief Propagation for Heterogeneous Networks (VLDB 2017)

    • Dhivya Eswaran, Stephan Gunnemann, Christos Faloutsos, Disha Makhija, Mohit Kumar
    • [Paper]
    • [Code]
  • Behavioral Analysis of Review Fraud: Linking Malicious Crowdsourcing to Amazon and Beyond (AAAI 2017)

    • Parisa Kaghazgaran, James Caverlee, Majid Alfifi
    • [Paper]
  • Detection of Money Laundering Groups: Supervised Learning on Small Networks (AAAI 2017)

    • David Savage, Qingmai Wang, Xiuzhen Zhang, Pauline Chou, Xinghuo Yu
    • [Paper]
  • Spectrum-based Deep Neural Networks for Fraud Detection (CIKM 2017)

    • Shuhan Yuan, Xintao Wu, Jun Li, Aidong Lu
    • [Paper]
  • HoloScope: Topology-and-Spike Aware Fraud Detection (CIKM 2017)

    • Shenghua Liu, Bryan Hooi, Christos Faloutsos
    • [Paper]
  • The Many Faces of Link Fraud (ICDM 2017)

    • Neil Shah, Hemank Lamba, Alex Beutel, Christos Faloutsos
    • [Paper]
  • HitFraud: A Broad Learning Approach for Collective Fraud Detection in Heterogeneous Information Networks (ICDM 2017)

    • Bokai Cao, Mia Mao, Siim Viidu, Philip S. Yu
    • [Paper]
  • GANG: Detecting Fraudulent Users in Online Social Networks via Guilt-by-Association on Directed Graphs (ICDM 2017)

  • Improving Card Fraud Detection Through Suspicious Pattern Discovery (IEA/AIE 2017)

    • Fabian Braun, Olivier Caelen, Evgueni N. Smirnov, Steven Kelk, Bertrand Lebichot:
    • [Paper]
  • Online Reputation Fraud Campaign Detection in User Ratings (IJCAI 2017)

    • Chang Xu, Jie Zhang, Zhu Sun
    • [Paper]
  • Uncovering Unknown Unknowns in Financial Services Big Data by Unsupervised Methodologies: Present and Future trends (KDD 2017)

    • Gil Shabat, David Segev, Amir Averbuch
    • [Paper]
  • PD-FDS: Purchase Density based Online Credit Card Fraud Detection System (KDD 2017)

    • Youngjoon Ki, Ji Won Yoon
    • [Paper]
  • HiDDen: Hierarchical Dense Subgraph Detection with Application to Financial Fraud Detection (SDM 2017)

    • Si Zhang, Dawei Zhou, Mehmet Yigit Yildirim, Scott Alcorn, Jingrui He, Hasan Davulcu, Hanghang Tong
    • [Paper]

2016

  • A Fraud Resilient Medical Insurance Claim System (AAAI 2016)

    • Yuliang Shi, Chenfei Sun, Qingzhong Li, Lizhen Cui, Han Yu, Chunyan Miao
    • [Paper]
  • A Graph-Based, Semi-Supervised, Credit Card Fraud Detection System (COMPLEX NETWORKS 2016)

    • Bertrand Lebichot, Fabian Braun, Olivier Caelen, Marco Saerens
    • [Paper]
  • FRAUDAR: Bounding Graph Fraud in the Face of Camouflage (KDD 2016)

    • Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, Christos Faloutsos
    • [Paper]
    • [Code]
  • Identifying Anomalies in Graph Streams Using Change Detection (KDD 2016)

    • William Eberle and Lawrence Holde
    • [Paper]
  • FairPlay: Fraud and Malware Detection in Google Play (SDM 2016)

    • Mahmudur Rahman, Mizanur Rahman, Bogdan Carbunar, Duen Horng Chau
    • [Paper]
  • BIRDNEST: Bayesian Inference for Ratings-Fraud Detection (SDM 2016)

    • Bryan Hooi, Neil Shah, Alex Beutel, Stephan Günnemann, Leman Akoglu, Mohit Kumar, Disha Makhija, Christos Faloutsos
    • [Paper]
  • Understanding the Detection of View Fraud in Video Content Portals (WWW 2016)

    • Miriam Marciel, Rubén Cuevas, Albert Banchs, Roberto Gonzalez, Stefano Traverso, Mohamed Ahmed, Arturo Azcorra
    • [Paper]

2015

  • Toward An Intelligent Agent for Fraud Detection — The CFE Agent (AAAI 2015)

  • Graph Analysis for Detecting Fraud, Waste, and Abuse in Healthcare Data (AAAI 2015)

    • Juan Liu, Eric Bier, Aaron Wilson, Tomonori Honda, Kumar Sricharan, Leilani Gilpin, John Alexis Guerra Gómez, Daniel Davies
    • [Paper]
  • Robust System for Identifying Procurement Fraud (AAAI 2015)

    • Amit Dhurandhar, Rajesh Kumar Ravi, Bruce Graves, Gopikrishnan Maniachari, Markus Ettl
    • [Paper]
  • Fraud Transaction Recognition: A Money Flow Network Approach (CIKM 2015)

    • Renxin Mao, Zhao Li, Jinhua Fu
    • [Paper]
  • Towards Collusive Fraud Detection in Online Reviews (ICDM 2015)

  • Catch the Black Sheep: Unified Framework for Shilling Attack Detection Based on Fraudulent Action Propagation (IJCAI 2015)

    • Yongfeng Zhang, Yunzhi Tan, Min Zhang, Yiqun Liu, Tat-Seng Chua, Shaoping Ma
    • [Paper]
  • Collective Opinion Spam Detection: Bridging Review Networks and Metadata (KDD 2015)

  • Graph-Based User Behavior Modeling: From Prediction to Fraud Detection (KDD 2015)

    • Alex Beutel, Leman Akoglu, Christos Faloutsos
    • [Paper]
  • FrauDetector: A Graph-Mining-based Framework for Fraudulent Phone Call Detection (KDD 2015)

    • Vincent S. Tseng, Jia-Ching Ying, Che-Wei Huang, Yimin Kao, Kuan-Ta Chen
    • [Paper]
  • A Framework for Intrusion Detection Based on Frequent Subgraph Mining (SDM 2015)

    • Vitali Herrera-Semenets, Niusvel Acosta-Mendoza, Andres Gago-Alonso
    • [Paper]
  • Crowd Fraud Detection in Internet Advertising (WWW 2015)

    • Tian Tian, Jun Zhu, Fen Xia, Xin Zhuang, Tong Zhang
    • [Paper]

2014

  • Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective (ICDM 2014)

    • Neil Shah, Alex Beutel, Brian Gallagher, Christos Faloutsos
    • [Paper]
    • [Code]
  • Fraudulent Support Telephone Number Identification Based on Co-Occurrence Information on the Web (AAAI 2014)

    • Xin Li, Yiqun Liu, Min Zhang, Shaoping Ma
    • [Paper]
  • Corporate Residence Fraud Detection (KDD 2014)

    • Enric Junqué de Fortuny, Marija Stankova, Julie Moeyersoms, Bart Minnaert, Foster J. Provost, David Martens
    • [Paper]
  • Graphical Models for Identifying Fraud and Waste in Healthcare Claims (SDM 2014)

    • Peder A. Olsen, Ramesh Natarajan, Sholom M. Weiss
    • [Paper]
  • Improving Credit Card Fraud Detection with Calibrated Probabilities (SDM 2014)

    • Alejandro Correa Bahnsen, Aleksandar Stojanovic, Djamila Aouada, Björn E. Ottersten
    • [Paper]
  • Large Graph Mining: Patterns, Cascades, Fraud Detection, and Algorithms (WWW 2014)

2013

  • Opinion Fraud Detection in Online Reviews by Network Effects (AAAI 2013)

    • Leman Akoglu, Rishi Chandy, Christos Faloutsos
    • [Paper]
  • Using Social Network Knowledge for Detecting Spider Constructions in Social Security Fraud (ASONAM 2013)

    • Véronique Van Vlasselaer, Jan Meskens, Dries Van Dromme, Bart Baesens
    • [Paper]
  • Ranking Fraud Detection for Mobile Apps: a Holistic View (CIKM 2013)

    • Hengshu Zhu, Hui Xiong, Yong Ge, Enhong Chen
    • [Paper]
  • Using Co-Visitation Networks for Detecting Large Scale Online Display Advertising Exchange Fraud (KDD 2013)

    • Ori Stitelman, Claudia Perlich, Brian Dalessandro, Rod Hook, Troy Raeder, Foster J. Provost
    • [Paper]
  • Adaptive Adversaries: Building Systems to Fight Fraud and Cyber Intruders (KDD 2013)

  • Anomaly, Event, and Fraud Detection in Large Network Datasets (WSDM 2013)

    • Leman Akoglu, Christos Faloutsos
    • [Paper]

2012

  • Fraud Detection: Methods of Analysis for Hypergraph Data (ASONAM 2012)

    • Anna Leontjeva, Konstantin Tretyakov, Jaak Vilo, and Taavi Tamkivi
    • [Paper]
  • Online Modeling of Proactive Moderation System for Auction Fraud Detection (WWW 2012)

    • Liang Zhang, Jie Yang, Belle L. Tseng
    • [Paper]

2011

  • A Machine-Learned Proactive Moderation System for Auction Fraud Detection (CIKM 2011)

    • Liang Zhang, Jie Yang, Wei Chu, Belle L. Tseng
    • [Paper]
  • A Taxi Driving Fraud Detection System (ICDM 2011)

    • Yong Ge, Hui Xiong, Chuanren Liu, Zhi-Hua Zhou
    • [Paper]
  • Utility-Based Fraud Detection (IJCAI 2011)

  • A Pattern Discovery Approach to Retail Fraud Detection (KDD 2011)

    • Prasad Gabbur, Sharath Pankanti, Quanfu Fan, Hoang Trinh
    • [Paper]

2010

  • Hunting for the Black Swan: Risk Mining from Text (ACL 2010)

  • Fraud Detection by Generating Positive Samples for Classification from Unlabeled Data (ACL 2010)

    • Levente Kocsis, Andras George
    • [Paper]

2009

  • SVM-based Credit Card Fraud Detection with Reject Cost and Class-Dependent Error Cost (PAKDD 2009)

    • En-hui Zheng,Chao Zou,Jian Sun, Le Chen
    • [Paper]
  • An Approach for Automatic Fraud Detection in the Insurance Domain (AAAI 2009)

    • Alexander Widder, Rainer v. Ammon, Gerit Hagemann, Dirk Schönfeld
    • [Paper]

2007

  • Relational Data Pre-Processing Techniques for Improved Securities Fraud Detection (KDD 2007)

    • Andrew S. Fast, Lisa Friedland, Marc E. Maier, Brian J. Taylor, David D. Jensen, Henry G. Goldberg, John Komoroske
    • [Paper]
  • Uncovering Fraud in Direct Marketing Data with a Fraud Auditing Case Builder (PKDD 2007)

  • Netprobe: A Fast and Scalable System for Fraud Detection in Online Auction Networks (WWW 2007)

    • Shashank Pandit, Duen Horng Chau, Samuel Wang, Christos Faloutsos
    • [Paper]

2006

  • Data Mining Approaches to Criminal Career Analysis (ICDM 2006)

    • Jeroen S. De Bruin, Tim K. Cocx, Walter A. Kosters, Jeroen F. J. Laros, Joost N. Kok
    • [Paper]
  • Large Scale Detection of Irregularities in Accounting Data (ICDM 2006)

    • Stephen Bay, Krishna Kumaraswamy, Markus G. Anderle, Rohit Kumar, David M. Steier
    • [Paper]
  • Camouflaged Fraud Detection in Domains with Complex Relationships (KDD 2006)

    • Sankar Virdhagriswaran, Gordon Dakin
    • [Paper]
  • Detecting Fraudulent Personalities in Networks of Online Auctioneers (PKDD 2006)

    • Duen Horng Chau, Shashank Pandit, Christos Faloutsos
    • [Paper]

2005

  • Technologies to Defeat Fraudulent Schemes Related to Email Requests (AAAI 2005)

    • Edoardo Airoldi, Bradley Malin, and Latanya Sweeney
    • [Paper]
  • AI Technologies to Defeat Identity Theft Vulnerabilities (AAAI 2005)

  • Detecting Fraud in Health Insurance Data: Learning to Model Incomplete Benford's Law Distributions (ECML 2005)

    • Fletcher Lu, J. Efrim Boritz
    • [Paper]
  • Using Relational Knowledge Discovery to Prevent Securities Fraud (KDD 2005)

    • Jennifer Neville, Özgür Simsek, David D. Jensen, John Komoroske, Kelly Palmer, Henry G. Goldberg
    • [Paper]

2003

  • Applying Data Mining in Investigating Money Laundering Crimes (KDD 2003)
    • Zhongfei (Mark) Zhang, John J. Salerno, Philip S. Yu
    • [Paper]

2000

  • Document Classification and Visualisation to Support the Investigation of Suspected Fraud (PKDD 2000)
    • Johan Hagman, Domenico Perrotta, Ralf Steinberger, and Aristi de Varfis
    • [Paper]

1999

  • Statistical Challenges to Inductive Inference in Linked Data. (AISTATS 1999)

1998

  • Toward Scalable Learning with Non-Uniform Class and Cost Distributions: A Case Study in Credit Card Fraud Detection (KDD 1998)

    • Phillip K Chan, Salvatore J Stolfo
    • [Paper]
  • Call-Based Fraud Detection in Mobile Communication Networks Using a Hierarchical Regime-Switching Model (NIPS 1998)

    • Jaakko Hollmén, Volker Tresp
    • [Paper]

1997

  • Detection of Mobile Phone Fraud Using Supervised Neural Networks: A First Prototype (ICANN 1997)

    • Yves Moreau, Herman Verrelst, Joos Vandewalle
    • [Paper]
  • Prospective Assessment of AI Technologies for Fraud Detection: A Case Study (AAAI 1997)

  • Credit Card Fraud Detection Using Meta-Learning: Issues and Initial Results (AAAI 1997)

    • Salvatore J. Stolfo, David W. Fan, Wenke Lee and Andreas L. Prodromidis
    • [Paper]

1995

  • Fraud: Uncollectible Debt Detection Using a Bayesian Network Based Learning System: A Rare Binary Outcome with Mixed Data Structures (UAI 1995)
    • Kazuo J. Ezawa, Til Schuermann
    • [Paper]

原文:https://github.com/benedekrozemberczki/awesome-fraud-detection-papers