跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) angular(83) LLM(79) 大语言模型(63) 人工智能(53) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(34) Go基础(29) Python(24) Vue(23) Web开发(20) Web技术(19) 精选资源(19) 深度学习(19) Java(18) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) 安卓(11) 聊天机器人(10) typescript(10) 资料精选(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) ChatGPT(9) LLMOps(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) mlops(9) 安全(9) 全栈开发(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 软件架构(7) RAG(7) Go语言高级开发(7) AWS(7) C++(7) 数据科学(7) 智能体(6) whisper(6) Prisma(6) 隐私保护(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 提示工程(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) kafka(5) 推荐系统(5) WebAssembly(5) GameDev(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) nextjs(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) RAG架构(4) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) 语言模型(2) 可穿戴设备(2) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) 数据分析(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

category

Table of Contents

Courses

  1. NLP with Deep Learning / CS224N from Stanford (Winter 2019)
  2. Neural Networks for NLP from Carnegie Mellon University
  3. Deep Learning for Natural Language Processing from University of Oxford and DeepMind

Books

  1. Deep Learning with Text: Natural Language Processing (Almost) from Scratch with Python and spaCy by Patrick Harrison and Matthew Honnibal
  2. Neural Network Methods in Natural Language Processing by Yoav Goldberg and Graeme Hirst
  3. Deep Learning in Natural Language Processing by Li Deng and Yang Liu
  4. Natural Language Processing in Action by Hobson Lane, Cole Howard, and Hannes Hapke
  5. Deep Learning: Natural Language Processing in Python by The LazyProgrammer (Kindle only)
    1. Word2Vec and Word Embeddings in Python and Theano
    2. From Word2Vec to GLoVe in Python and Theano
    3. Recursive Neural Networks: Recursive Neural (Tensor) Networks in Theano
  6. Applied Natural Language Processing with Python by Taweh Beysolow II
  7. Deep Learning Cookbook by Douwe Osinga
  8. Deep Learning for Natural Language Processing: Creating Neural Networks with Python by Palash Goyal, Sumit Pandey, Karan Jain
  9. Machine Learning for Text by Charu C. Aggarwal
  10. Natural Language Processing with TensorFlow by Thushan Ganegedara
  11. fastText Quick Start Guide: Get started with Facebook's library for text representation and classification
  12. Hands-On Natural Language Processing with Python

Tutorials

  1. Text classification guide from Google
  2. Deep Learning for NLP with PyTorch

Talks

  1. Deep Learning for Natural Language Processing (without Magic)
  2. A Primer on Neural Network Models for Natural Language Processing
  3. Deep Learning for Natural Language Processing: Theory and Practice (Tutorial)
  4. TensorFlow Tutorials
  5. Practical Neural Networks for NLP from EMNLP 2016 using DyNet framework
  6. Recurrent Neural Networks with Word Embeddings
  7. LSTM Networks for Sentiment Analysis
  8. TensorFlow demo using the Large Movie Review Dataset
  9. LSTMVis: Visual Analysis for Recurrent Neural Networks
  10. Using deep learning in natural language processing by Rob Romijnders from PyData Amsterdam 2017
  11. Richard Socher's talk on sentiment analysis, question answering, and sentence-image embeddings
  12. Deep Learning, an interactive introduction for NLP-ers
  13. Deep Natural Language Understanding
  14. Deep Learning Summer School, Montreal 2016 Includes state-of-art language modeling.
  15. Tackling the Limits of Deep Learning for NLP by Richard Socher

Frameworks

  1. Overview of DL frameworks for NLP

  2. General Frameworks

    1. Keras - The Python Deep Learning library Emphasis on user friendliness, modularity, easy extensibility, and Pythonic.
    2. TensorFlow - A cross-platform, general purpose Machine Intelligence library with Python and C++ API.
    3. PyTorch - PyTorch is a deep learning framework that puts Python first. "Tensors and Dynamic neural networks in Python with strong GPU acceleration."
  3. Specific Frameworks

    1. SpaCy - A Python package designed for speed, getting things dones, and interoperates with other Deep Learning frameworks
    2. Genism: Topic modeling for humans - A Python package that includes word2vec and doc2vec implementations.
    3. fasttext Facebook's library for fast text representation and classification.
    4. Built on TensorFlow
      1. SyntaxNet - A toolkit for natural language understanding (NLU).
      2. textsum - A Sequence-to-Sequence with Attention Model for Text Summarization.
      3. Skip-Thought Vectors implementation in TensorFlow.
      4. ActiveQA: Active Question Answering - Using reinforcement learning to train artificial agents for question answering
      5. BERT - Bidirectional Encoder Representations from Transformers for pre-trained models
    5. Built on PyTorch
      1. PyText - A deep-learning based NLP modeling framework by Facebook
      2. AllenNLP - An open-source NLP research library
      3. Flair - A very simple framework for state-of-the-art NLP
      4. fairseq - A Sequence-to-Sequence Toolkit
      5. fastai - Simplifies training fast and accurate neural nets using modern best practices
      6. Transformer model - Annotated notebook implementation
    6. Deeplearning4j’s NLP framework - Java implementation.
    7. DyNet - The Dynamic Neural Network Toolkit "work well with networks that have dynamic structures that change for every training instance".
    8. deepnl - A Python library for NLP based on Deep Learning neural network architecture.

Papers

  1. Deep or shallow, NLP is breaking out - General overview of how Deep Learning is impacting NLP.
  2. Natural Language Processing from Research at Google - Not all Deep Learning (but mostly).
  3. Context Dependent Recurrent Neural Network Language Model
  4. Translation Modeling with Bidirectional Recurrent Neural Networks
  5. Contextual LSTM (CLSTM) models for Large scale NLP tasks
  6. LSTM Neural Networks for Language Modeling
  7. Exploring the Limits of Language Modeling
  8. Conversational Contextual Cues - Models context and participants in conversations.
  9. Sequence to sequence learning with neural networks
  10. Efficient Estimation of Word Representations in Vector Space
  11. Learning Character-level Representations for Part-of-Speech Tagging
  12. Representation Learning for Text-level Discourse Parsing
  13. Fast and Robust Neural Network Joint Models for Statistical Machine Translation
  14. Parsing With Compositional Vector Grammars
  15. Smart Reply: Automated Response Suggestion for Email
  16. Neural Architectures for Named Entity Recognition - State-of-the-art performance in NER with bidirectional LSTM with a sequential conditional random layer and transition-based parsing with stack LSTMs.
  17. Grammar as a Foreign Language - State-of-the-art syntactic constituency parsing using generic sequence-to-sequence approach.

Blog Posts

  1. Natural Language Processing (NLP) progress Tracking the most common NLP tasks, including the datasets and the current state-of-the-art
  2. A Review of the Recent History of Natural Language Processing
  3. Deep Learning, NLP, and Representations
  4. The Unreasonable Effectiveness of Recurrent Neural Networks
  5. Neural Language Modeling From Scratch
  6. Machine Learning for Emoji Trends
  7. Teaching Robots to Feel: Emoji & Deep Learning
  8. Computational Linguistics and Deep Learning - Opinion piece on how Deep Learning fits into the broader picture of text processing.
  9. Deep Learning NLP Best Practices
  10. 7 types of Artificial Neural Networks for Natural Language Processing
  11. How to solve 90% of NLP problems: a step-by-step guide

Datasets

  1. Dataset from "One Billion Word Language Modeling Benchmark" - Almost 1B words, already pre-processed text.
  2. Stanford Sentiment Treebank - Fine grained sentiment labels for 215,154 phrases in the parse trees of 11,855 sentences.
  3. Chatbot data from Kaggle
  4. A list of text datasets that are free/public domain in alphabetical order
  5. Another list of text datasets that are free/public domain in reverse chronological order
  6. Question Answering datasets
    1. Quora's Question Pairs Dataset - Identify question pairs that have the same intent.
    2. CMU's Wikipedia Factoid Question Answers
    3. DeepMind's Algebra Question Answering
    4. DeepMind's from CNN & DailyMail Question Answering
    5. Microsoft's WikiQA Open Domain Question Answering
    6. Stanford Question Answering Dataset (SQuAD) - covering reading comprehension

Word Embeddings and friends

  1. The amazing power of word vectors from The Morning Paper blog
  2. Distributed Representations of Words and Phrases and their Compositionality - The original word2vec paper.
  3. word2vec Parameter Learning Explained An elucidating explanation of word2vec training
  4. Word embeddings in 2017: Trends and future directions
  5. Learning Word Vectors for 157 Languages
  6. GloVe: Global Vectors for Word Representation - A "count-based"/co-occurrence model to learn word embeddings.
  7. Doc2Vec
  8. Dynamic word embeddings for evolving semantic discovery from The Morning Paper blog
  9. Ali Ghodsi's lecture on word2vec:
  10. word2vec analogy demo
  11. TensorFlow Embedding Projector of word vectors
  12. Skip-Thought Vectors - "unsupervised learning of a generic, distributed sentence encoder"

原文:https://github.com/brianspiering/awesome-dl4nlp