跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) angular(83) LLM(79) 大语言模型(63) 人工智能(53) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(34) Go基础(29) Python(24) Vue(23) Web开发(20) Web技术(19) 精选资源(19) 深度学习(19) Java(18) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) 安卓(11) 聊天机器人(10) typescript(10) 资料精选(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) ChatGPT(9) LLMOps(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) mlops(9) 安全(9) 全栈开发(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 软件架构(7) RAG(7) Go语言高级开发(7) AWS(7) C++(7) 数据科学(7) 智能体(6) whisper(6) Prisma(6) 隐私保护(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 提示工程(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) kafka(5) 推荐系统(5) WebAssembly(5) GameDev(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) nextjs(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) RAG架构(4) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) 语言模型(2) 可穿戴设备(2) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) 数据分析(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

category

LLM和ML模型的评估和测试框架

控制人工智能模型中的性能、偏见和安全问题的风险

 

 

Install Giskard 🐢

 

Install the latest version of Giskard from PyPi using pip:

pip install "giskard[llm]" -U

We officially support Python 3.9, 3.10 and 3.11.

Try in Colab 📙

 

Open Colab notebook


Giskard是一个开源Python库,可以自动检测人工智能应用程序中的性能、偏见和安全问题。该库涵盖了基于LLM的应用程序,如RAG代理,一直到用于表格数据的传统ML模型。

Scan: Automatically assess your LLM-based agents for performance, bias & security issues ⤵️

 

Issues detected include:

  • 幻觉
  • 有害内容生成
  • 提示注入
  • 稳健性问题
  • 敏感信息披露
  • 刻板印象和歧视
  • 更多。。。

Scan Example

RAG评估工具包(RAGET):自动生成评估数据集并评估RAG应用程序的答案⤵️

 

If you're testing a RAG application, you can get an even more in-depth assessment using RAGET, Giskard's RAG Evaluation Toolkit.

  • RAGET can generate automatically a list of questionreference_answer and reference_context from the knowledge base of the RAG. You can then use this generated test set to evaluate your RAG agent.

  • RAGET computes scores for each component of the RAG agent. The scores are computed by aggregating the correctness of the agent’s answers on different question types.

    • Here is the list of components evaluated with RAGET:
      • Generator: the LLM used inside the RAG to generate the answers
      • Retriever: fetch relevant documents from the knowledge base according to a user query
      • Rewriter: rewrite the user query to make it more relevant to the knowledge base or to account for chat history
      • Router: filter the query of the user based on his intentions
      • Knowledge Base: the set of documents given to the RAG to generate the answers

Test Suite Example

Giskard works with any model, in any environment and integrates seamlessly with your favorite tools ⤵️

 

Contents

 

🤸‍♀️ Quickstart

 

1. 🏗️ Build a LLM agent

 

Let's build an agent that answers questions about climate change, based on the 2023 Climate Change Synthesis Report by the IPCC.

Before starting let's install the required libraries:

pip install langchain tiktoken "pypdf<=3.17.0"
from langchain import OpenAI, FAISS, PromptTemplate
from langchain.embeddings import OpenAIEmbeddings
from langchain.document_loaders import PyPDFLoader
from langchain.chains import RetrievalQA
from langchain.text_splitter import RecursiveCharacterTextSplitter

# Prepare vector store (FAISS) with IPPC report
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100, add_start_index=True)
loader = PyPDFLoader("https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_LongerReport.pdf")
db = FAISS.from_documents(loader.load_and_split(text_splitter), OpenAIEmbeddings())

# Prepare QA chain
PROMPT_TEMPLATE = """You are the Climate Assistant, a helpful AI assistant made by Giskard.
Your task is to answer common questions on climate change.
You will be given a question and relevant excerpts from the IPCC Climate Change Synthesis Report (2023).
Please provide short and clear answers based on the provided context. Be polite and helpful.

Context:
{context}

Question:
{question}

Your answer:
"""

llm = OpenAI(model="gpt-3.5-turbo-instruct", temperature=0)
prompt = PromptTemplate(template=PROMPT_TEMPLATE, input_variables=["question", "context"])
climate_qa_chain = RetrievalQA.from_llm(llm=llm, retriever=db.as_retriever(), prompt=prompt)

2. 🔎 Scan your model for issues

 

Next, wrap your agent to prepare it for Giskard's scan:

import giskard
import pandas as pd

def model_predict(df: pd.DataFrame):
    """Wraps the LLM call in a simple Python function.

    The function takes a pandas.DataFrame containing the input variables needed
    by your model, and must return a list of the outputs (one for each row).
    """
    return [climate_qa_chain.run({"query": question}) for question in df["question"]]

# Don’t forget to fill the `name` and `description`: they are used by Giskard
# to generate domain-specific tests.
giskard_model = giskard.Model(
    model=model_predict,
    model_type="text_generation",
    name="Climate Change Question Answering",
    description="This model answers any question about climate change based on IPCC reports",
    feature_names=["question"],
)

✨✨✨Then run Giskard's magical scan✨✨✨

scan_results = giskard.scan(giskard_model)

Once the scan completes, you can display the results directly in your notebook:

display(scan_results)

# Or save it to a file
scan_results.to_html("scan_results.html")

If you're facing issues, check out our docs for more information.

3. 🪄 Automatically generate an evaluation dataset for your RAG applications

 

If the scan found issues in your model, you can automatically extract an evaluation dataset based on the issues found:

test_suite = scan_results.generate_test_suite("My first test suite")

By default, RAGET automatically generates 6 different question types (these can be selected if needed, see advanced question generation). The total number of questions is divided equally between each question type. To make the question generation more relevant and accurate, you can also provide a description of your agent.

from giskard.rag import generate_testset, KnowledgeBase

# Load your data and initialize the KnowledgeBase
df = pd.read_csv("path/to/your/knowledge_base.csv")

knowledge_base = KnowledgeBase.from_pandas(df, columns=["column_1", "column_2"])

# Generate a testset with 10 questions & answers for each question types (this will take a while)
testset = generate_testset(
    knowledge_base, 
    num_questions=60,
    language='en',  # optional, we'll auto detect if not provided
    agent_description="A customer support chatbot for company X", # helps generating better questions
)

Depending on how many questions you generate, this can take a while. Once you’re done, you can save this generated test set for future use:

# Save the generated testset
testset.save("my_testset.jsonl")

You can easily load it back

from giskard.rag import QATestset

loaded_testset = QATestset.load("my_testset.jsonl")

# Convert it to a pandas dataframe
df = loaded_testset.to_pandas()

Here’s an example of a generated question:

question reference_context reference_answer metadata
For which countries can I track my shipping? Document 1: We offer free shipping on all orders over $50. For orders below $50, we charge a flat rate of $5.99. We offer shipping services to customers residing in all 50 states of the US, in addition to providing delivery options to Canada and Mexico. Document 2: Once your purchase has been successfully confirmed and shipped, you will receive a confirmation email containing your tracking number. You can simply click on the link provided in the email or visit our website’s order tracking page. We ship to all 50 states in the US, as well as to Canada and Mexico. We offer tracking for all our shippings. {"question_type": "simple", "seed_document_id": 1, "topic": "Shipping policy"}

Each row of the test set contains 5 columns:

  • question: the generated question
  • reference_context: the context that can be used to answer the question
  • reference_answer: the answer to the question (generated with GPT-4)
  • conversation_history: not shown in the table above, contain the history of the conversation with the agent as a list, only relevant for conversational question, otherwise it contains an empty list.
  • metadata: a dictionary with various metadata about the question, this includes the question_type, seed_document_id the id of the document used to generate the question and the topic of the question
文章链接