跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) angular(83) LLM(79) 大语言模型(63) 人工智能(53) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(34) Go基础(29) Python(24) Vue(23) Web开发(20) Web技术(19) 精选资源(19) 深度学习(19) Java(18) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) 安卓(11) 聊天机器人(10) typescript(10) 资料精选(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) ChatGPT(9) LLMOps(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) mlops(9) 安全(9) 全栈开发(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 软件架构(7) RAG(7) Go语言高级开发(7) AWS(7) C++(7) 数据科学(7) 智能体(6) whisper(6) Prisma(6) 隐私保护(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 提示工程(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) kafka(5) 推荐系统(5) WebAssembly(5) GameDev(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) nextjs(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) RAG架构(4) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) 语言模型(2) 可穿戴设备(2) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) 数据分析(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

在文本文档中查找个人身份信息(PII)可能很有用,原因有几个,但我多次遇到的一个用例是帮助匿名文本,以便:

  • 与第三方共享数据
  • 遵守GDPR等法规要求
  • 将PII替换为模拟数据,用作机器学习和其他探索性分析的训练数据

我将尝试自动化查找PII的过程,在本系列文章中,我们将探索一些流行的开源工具和技术,以便在我们自己的数据中识别不同类型的PII。

在第一部分中,我们找到了一种在文本中查找人名的方法,让我们看看我们还可以找到其他类型的PII。

介绍Duckling

Duckling是一个Haskell库,由Facebook开源,用于将文本解析为结构化数据。Duckling可以帮助我们在文本中找到不同类型的信息,包括信用卡号码、电子邮件地址和电话号码。

现在别担心,如果你不是了解Haskell的三个人之一,我们可以将Duckling与任何编程语言一起使用。

Python示例

让我们看看我们将如何用一种不需要关于副作用的害处的演讲的语言来使用Duckling。

先决条件:

安装Git、Docker和Docker-compose

步骤1:

git clone git@github.com:facebook/duckling.git

第2步:

在克隆的Duckling repo中制作一个docker compose文件。

docker-compose.yml:

version: '3'

services:
  duckling:
    build:
      context: .
    ports:
      - 8000:8000

步骤3:

开始Ducking作为Docker服务:

docker-compose up duckling

现在,Duckling服务通过我们本地主机上的端口8000通过HTTP API提供。让我们开始对API进行一些调用,看看我们得到了什么:

import requests

text = 'My email address is spy@ninja.com and my number is +1 (650) 123-4567 so call me maybe?'

response = requests.post('http://localhost:8000/parse', {'locale': 'en_US', 'text': text})

entities = response.json()

for entity in entities:
    print( entity['dim'] +": "+ entity['body'])

这将打印以下内容:

email: spy@ninja.com
phone-number: +1 (650) 123-4567

美好的Duckling在我们的文本中找到了电子邮件地址和电话号码,并确认此文本包含PII。现在让我们看看它是如何处理信用卡号的:

import requests

text = 'Last Christmas I gave you my card 4111-1111-1111-1111 But the very next day you gave it away'

response = requests.post('http://localhost:8000/parse', {'locale': 'en_US', 'text': text, 'dims': ["credit-card-number"]})

entities = response.json()

for entity in entities:
    print( entity['dim'] +": "+ entity['body'])

迫不及待地想看到那个甜蜜的信用卡号被打印出来。让我们看看它打印了什么:

credit-card-number: 4111-1111-1111-1111
phone-number: 4111-1111-1111-1111

呃…它检测到我们的号码是电话号码和信用卡号码。我想安全总比抱歉好。

Duckling可以帮助我们找到其他类型的数据,或者用Duckling的语言称为“维度”,所以请随意浏览该项目的Github页面,看看还有什么可用的。

结论

我们现在可以添加到我们能够找到的PII类型列表中:人名、电子邮件地址、电话号码和信用卡号。我们已经看到还有改进的空间,例如,我们可以使用Luhn算法来确认一个号码是信用卡号码,而不是电话号码,但这超出了本系列的范围,因为每个人都需要在这里讨论的主题的基础上构建自己的用例。

在接下来的文章中,我们将看到其他工具是如何执行的,以及它们可以帮助我们找到哪些其他类型的PII。