跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) angular(83) LLM(80) 大语言模型(64) 人工智能(54) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(34) Go基础(29) Python(24) Vue(23) Web开发(20) Web技术(19) 精选资源(19) 深度学习(19) Java(18) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) 安卓(11) 聊天机器人(10) typescript(10) 资料精选(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) ChatGPT(9) LLMOps(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) mlops(9) 安全(9) 全栈开发(8) RAG(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 软件架构(7) Go语言高级开发(7) AWS(7) C++(7) 数据科学(7) 智能体(6) whisper(6) Prisma(6) 隐私保护(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 提示工程(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) kafka(5) 推荐系统(5) WebAssembly(5) GameDev(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) nextjs(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) RAG架构(4) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 模型评估(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) 可穿戴设备(2) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) 数据分析(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

1.概述

对称密钥分组密码在数据加密中起着重要作用。这意味着加密和解密都使用相同的密钥。高级加密标准(AES)是一种广泛使用的对称密钥加密算法。

在本教程中,我们将学习如何在JDK中使用Java Cryptography Architecture(JCA)实现AES加密和解密。

2.AES算法

AES算法是一种迭代的对称密钥块密码,它支持128、192和256位的密钥(秘密密钥)来加密和解密128位块中的数据。下图显示了高级AES算法:

Encryption

如果要加密的数据不满足128位的块大小要求,则必须对其进行填充。填充是将最后一个块填充为128位的过程。

3.AES变化

AES算法有六种操作模式:

  • ECB(电子代码簿)
  • CBC(密码块链接)
  • CFB(密码反馈)
  • OFB(输出反馈)
  • CTR(计数器)
  • GCM(伽罗瓦/计数器模式)

我们可以应用这种操作模式来加强加密算法的效果。此外,操作模式可以将分组密码转换为流密码。每种模式都有其长处和短处。让我们快速回顾每一个。

3.1. ECB

这种操作模式是最简单的。明文被划分为大小为128位的块。然后用相同的密钥和算法对每个块进行加密。因此,它对同一块产生相同的结果。这是该模式的主要弱点,不建议用于加密。它需要填充数据。

3.2.CBC

为了克服ECB的弱点,CBC模式使用初始化向量(IV)来增强加密。首先,CBC使用带有IV的明文块xor。然后将结果加密到密文块。在下一个块中,它使用加密结果与明文块异或,直到最后一个块。

在这种模式下,加密不能并行化,但解密可以并行化。它还需要填充数据。

3.3.CFB

此模式可以用作流密码。首先,它对IV进行加密,然后与明文块进行异或以获得密文。然后CFB对加密结果进行加密以异或明文。它需要IV。

在这种模式下,解密可以并行化,但加密不能并行化。

3.4.OFB

此模式可以用作流密码。首先对IV进行加密,然后利用加密结果对明文进行异或运算,得到密文。

它不需要填充数据,也不会受到嘈杂块的影响。

3.5.CTR

这种模式使用计数器的值作为IV。它与OFB非常相似,但每次都使用计数器而不是IV进行加密。

这种模式有两个优点,包括加密/解密并行化,并且一个块中的噪声不会影响其他块。

3.6.GCM

此模式是CTR模式的扩展。GCM受到了极大的关注,并得到了NIST的推荐。GCM模型输出密文和认证标签。与算法的其他操作模式相比,该模式的主要优点是其效率。

在本教程中,我们将使用AES/CCBC/PKCS5Padding算法,因为它在许多项目中被广泛使用。

3.7.加密后的数据大小

如前所述,AES具有128位或16字节的块大小。AES不会改变大小,密文大小等于明文大小。此外,在ECB和CBC模式中,我们应该使用类似PKCS 5的填充算法。因此,加密后的数据大小为:

ciphertext_size (bytes) = cleartext_size + (16 - (cleartext_size % 16))

为了用密文存储IV,我们需要再添加16个字节。

4.AES参数

在AES算法中,我们需要三个参数:输入数据、密钥和IV。IV在ECB模式中不使用。

4.1.输入数据

AES的输入数据可以是基于字符串、文件、对象和密码的。

4.2.密钥

AES中有两种生成密钥的方法:从随机数生成密钥,或者从给定的密码派生密钥。

在第一种方法中,密钥应该由加密安全(伪)随机数生成器(如SecureRandom类)生成。

为了生成密钥,我们可以使用KeyGenerator类。让我们定义一种生成大小为n(128、192和256)位的AES密钥的方法:

public static SecretKey generateKey(int n) throws NoSuchAlgorithmException {
    KeyGenerator keyGenerator = KeyGenerator.getInstance("AES");
    keyGenerator.init(n);
    SecretKey key = keyGenerator.generateKey();
    return key;
}

在第二种方法中,可以使用类似PBKDF2的基于密码的密钥推导函数从给定密码推导AES密钥。我们还需要一个salt值来将密码转换为密钥。盐也是一个随机值。

我们可以将SecretKeyFactory类与PBKDF2WithHmacSHA256算法一起使用,从给定的密码生成密钥。

让我们定义一种方法,通过65536次迭代和256位的密钥长度从给定密码生成AES密钥:

public static SecretKey getKeyFromPassword(String password, String salt)
    throws NoSuchAlgorithmException, InvalidKeySpecException {
    
    SecretKeyFactory factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA256");
    KeySpec spec = new PBEKeySpec(password.toCharArray(), salt.getBytes(), 65536, 256);
    SecretKey secret = new SecretKeySpec(factory.generateSecret(spec)
        .getEncoded(), "AES");
    return secret;
}

4.3.初始化矢量(四)

IV是一个伪随机值,并且具有与加密的块相同的大小。我们可以使用SecureRandom类生成随机IV。

让我们定义一种生成IV的方法:

public static IvParameterSpec generateIv() {
    byte[] iv = new byte[16];
    new SecureRandom().nextBytes(iv);
    return new IvParameterSpec(iv);
}

5.加密和解密

5.1.字符串

要实现输入字符串加密,我们首先需要根据上一节生成密钥和IV。下一步,我们使用getInstance()方法从Cipher类创建一个实例。

此外,我们使用init()方法配置了一个密码实例,该方法具有密钥IV和加密模式。最后,我们通过调用doFinal()方法来加密输入字符串。此方法获取输入的字节数,并以字节为单位返回密文:

public static String encrypt(String algorithm, String input, SecretKey key,
    IvParameterSpec iv) throws NoSuchPaddingException, NoSuchAlgorithmException,
    InvalidAlgorithmParameterException, InvalidKeyException,
    BadPaddingException, IllegalBlockSizeException {
    
    Cipher cipher = Cipher.getInstance(algorithm);
    cipher.init(Cipher.ENCRYPT_MODE, key, iv);
    byte[] cipherText = cipher.doFinal(input.getBytes());
    return Base64.getEncoder()
        .encodeToString(cipherText);
}

为了解密输入字符串,我们可以使用DECRYPT_MODE初始化我们的密码来解密内容:

public static String decrypt(String algorithm, String cipherText, SecretKey key,
    IvParameterSpec iv) throws NoSuchPaddingException, NoSuchAlgorithmException,
    InvalidAlgorithmParameterException, InvalidKeyException,
    BadPaddingException, IllegalBlockSizeException {
    
    Cipher cipher = Cipher.getInstance(algorithm);
    cipher.init(Cipher.DECRYPT_MODE, key, iv);
    byte[] plainText = cipher.doFinal(Base64.getDecoder()
        .decode(cipherText));
    return new String(plainText);
}

让我们编写一个用于加密和解密字符串输入的测试方法:

@Test
void givenString_whenEncrypt_thenSuccess()
    throws NoSuchAlgorithmException, IllegalBlockSizeException, InvalidKeyException,
    BadPaddingException, InvalidAlgorithmParameterException, NoSuchPaddingException { 
    
    String input = "baeldung";
    SecretKey key = AESUtil.generateKey(128);
    IvParameterSpec ivParameterSpec = AESUtil.generateIv();
    String algorithm = "AES/CBC/PKCS5Padding";
    String cipherText = AESUtil.encrypt(algorithm, input, key, ivParameterSpec);
    String plainText = AESUtil.decrypt(algorithm, cipherText, key, ivParameterSpec);
    Assertions.assertEquals(input, plainText);
}

5.2. File

现在让我们使用AES算法对文件进行加密。步骤是相同的,但我们需要一些IO类来处理这些文件。让我们加密一个文本文件:

public static void encryptFile(String algorithm, SecretKey key, IvParameterSpec iv,
    File inputFile, File outputFile) throws IOException, NoSuchPaddingException,
    NoSuchAlgorithmException, InvalidAlgorithmParameterException, InvalidKeyException,
    BadPaddingException, IllegalBlockSizeException {
    
    Cipher cipher = Cipher.getInstance(algorithm);
    cipher.init(Cipher.ENCRYPT_MODE, key, iv);
    FileInputStream inputStream = new FileInputStream(inputFile);
    FileOutputStream outputStream = new FileOutputStream(outputFile);
    byte[] buffer = new byte[64];
    int bytesRead;
    while ((bytesRead = inputStream.read(buffer)) != -1) {
        byte[] output = cipher.update(buffer, 0, bytesRead);
        if (output != null) {
            outputStream.write(output);
        }
    }
    byte[] outputBytes = cipher.doFinal();
    if (outputBytes != null) {
        outputStream.write(outputBytes);
    }
    inputStream.close();
    outputStream.close();
}

请注意,不建议尝试将整个文件读取到内存中,尤其是在文件很大的情况下。相反,我们一次加密一个缓冲区。

对于解密文件,我们使用类似的步骤,并使用DECRYPT_MODE初始化密码,如前所述。

再次,让我们定义一个用于加密和解密文本文件的测试方法。在这种方法中,我们从测试资源目录中读取baeldung.txt文件,将其加密到一个名为baeldung.encrypted的文件中,然后将该文件解密到一个新文件中:

@Test
void givenFile_whenEncrypt_thenSuccess() 
    throws NoSuchAlgorithmException, IOException, IllegalBlockSizeException, 
    InvalidKeyException, BadPaddingException, InvalidAlgorithmParameterException, 
    NoSuchPaddingException {
    
    SecretKey key = AESUtil.generateKey(128);
    String algorithm = "AES/CBC/PKCS5Padding";
    IvParameterSpec ivParameterSpec = AESUtil.generateIv();
    Resource resource = new ClassPathResource("inputFile/baeldung.txt");
    File inputFile = resource.getFile();
    File encryptedFile = new File("classpath:baeldung.encrypted");
    File decryptedFile = new File("document.decrypted");
    AESUtil.encryptFile(algorithm, key, ivParameterSpec, inputFile, encryptedFile);
    AESUtil.decryptFile(
      algorithm, key, ivParameterSpec, encryptedFile, decryptedFile);
    assertThat(inputFile).hasSameTextualContentAs(decryptedFile);
}

5.3.基于密码

我们可以使用从给定密码派生的密钥进行AES加密和解密。

为了生成密钥,我们使用getKeyFromPassword()方法。加密和解密步骤与字符串输入部分中所示的步骤相同。然后,我们可以使用实例化的密码和提供的密钥来执行加密。

让我们写一个测试方法:

@Test
void givenPassword_whenEncrypt_thenSuccess() 
    throws InvalidKeySpecException, NoSuchAlgorithmException, 
    IllegalBlockSizeException, InvalidKeyException, BadPaddingException, 
    InvalidAlgorithmParameterException, NoSuchPaddingException {
    
    String plainText = "www.baeldung.com";
    String password = "baeldung";
    String salt = "12345678";
    IvParameterSpec ivParameterSpec = AESUtil.generateIv();
    SecretKey key = AESUtil.getKeyFromPassword(password,salt);
    String cipherText = AESUtil.encryptPasswordBased(plainText, key, ivParameterSpec);
    String decryptedCipherText = AESUtil.decryptPasswordBased(
      cipherText, key, ivParameterSpec);
    Assertions.assertEquals(plainText, decryptedCipherText);
}

5.4.对象

为了加密Java对象,我们需要使用SealedObject类。对象应该是可序列化的。让我们从定义学生类开始:

public class Student implements Serializable {
    private String name;
    private int age;

    // standard setters and getters
}

接下来,让我们加密Student对象:

public static SealedObject encryptObject(String algorithm, Serializable object,
    SecretKey key, IvParameterSpec iv) throws NoSuchPaddingException,
    NoSuchAlgorithmException, InvalidAlgorithmParameterException, 
    InvalidKeyException, IOException, IllegalBlockSizeException {
    
    Cipher cipher = Cipher.getInstance(algorithm);
    cipher.init(Cipher.ENCRYPT_MODE, key, iv);
    SealedObject sealedObject = new SealedObject(object, cipher);
    return sealedObject;
}

加密的对象稍后可以使用正确的密码进行解密:

public static Serializable decryptObject(String algorithm, SealedObject sealedObject,
    SecretKey key, IvParameterSpec iv) throws NoSuchPaddingException,
    NoSuchAlgorithmException, InvalidAlgorithmParameterException, InvalidKeyException,
    ClassNotFoundException, BadPaddingException, IllegalBlockSizeException,
    IOException {
    
    Cipher cipher = Cipher.getInstance(algorithm);
    cipher.init(Cipher.DECRYPT_MODE, key, iv);
    Serializable unsealObject = (Serializable) sealedObject.getObject(cipher);
    return unsealObject;
}

现在让我们编写一个测试用例:

@Test
void givenObject_whenEncrypt_thenSuccess() 
    throws NoSuchAlgorithmException, IllegalBlockSizeException, InvalidKeyException,
    InvalidAlgorithmParameterException, NoSuchPaddingException, IOException, 
    BadPaddingException, ClassNotFoundException {
    
    Student student = new Student("Baeldung", 20);
    SecretKey key = AESUtil.generateKey(128);
    IvParameterSpec ivParameterSpec = AESUtil.generateIv();
    String algorithm = "AES/CBC/PKCS5Padding";
    SealedObject sealedObject = AESUtil.encryptObject(
      algorithm, student, key, ivParameterSpec);
    Student object = (Student) AESUtil.decryptObject(
      algorithm, sealedObject, key, ivParameterSpec);
    assertThat(student).isEqualToComparingFieldByField(object);
}

6.结论

在本文中,我们学习了如何在Java中使用AES算法对字符串、文件、对象和基于密码的数据等输入数据进行加密和解密。此外,我们还讨论了AES的变化和加密后数据的大小。

和往常一样,文章的完整源代码是可用的

 over on GitHub.

标签