跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) angular(83) LLM(78) 大语言模型(63) 人工智能(53) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(34) Go基础(29) Python(24) Vue(23) Web开发(20) Web技术(19) 精选资源(19) 深度学习(19) Java(18) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) 安卓(11) 聊天机器人(10) typescript(10) 资料精选(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) ChatGPT(9) LLMOps(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) mlops(9) 安全(9) 全栈开发(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 软件架构(7) RAG(7) Go语言高级开发(7) AWS(7) C++(7) 数据科学(7) 智能体(6) whisper(6) Prisma(6) 隐私保护(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 提示工程(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) kafka(5) 推荐系统(5) WebAssembly(5) GameDev(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) nextjs(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) RAG架构(3) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) 语言模型(2) 可穿戴设备(2) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) 数据分析(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

Phi-3 Mini是一款3.8B参数、重量轻、最先进的开放式模型

Phi-3 Mini


Phi-3 Mini是一个3.8B参数、轻量级、最先进的开放模型,使用Phi-3数据集进行训练,包括合成数据和过滤后的公开网站数据,重点关注高质量和推理密集的属性。
该模型经过了一个后期训练过程,其中包括监督微调和直接偏好优化,以确保精确的指令遵守和稳健的安全措施。
当根据测试常识、语言理解、数学、代码、长上下文和逻辑推理的基准进行评估时,Phi-3 Mini-4K-Instruction在参数不到130亿的模型中展示了稳健和最先进的性能。

预期用途


主要使用案例


该模型旨在以英语进行商业和研究用途。该模型为需要1)内存/计算受限环境2)延迟受限场景3)强推理(尤其是数学和逻辑)4)长上下文的应用程序提供了用途
我们的模型旨在加速对语言和多模式模型的研究,用作生成人工智能功能的构建块。

【大语言模型】如何用Whisper转录音频:2023年综合指南

在当今快节奏的数字世界中,将口语转换为书面文本已成为专业人士和个人的宝贵工具。无论你是记录采访的记者、记录讲座的学生,还是记录会议的商业专业人士,准确转录音频的能力都至关重要。进入由OpenAI最先进的Whisper模型提供支持的音频API,这是语音转文本技术领域的游戏规则改变者。

音频API包含两个强大的端点:转录和翻译。这些都建立在Whisper大v2模型的基础上,该模型以擅长处理各种语言任务而闻名。这个工具不仅仅是将音频转录成文本;它还能够将各种语言的口语翻译成英语。无论您是处理播客、重要的商务电话还是多语言会议,Audio API都能满足各种需求。

在深入探讨如何使用这项尖端技术的细节之前,重要的是要注意几个关键方面。API目前支持高达25 MB的文件上载,可容纳常见的音频格式,如mp3、mp4、mpeg、mpga、m4a、wav和webm。这种灵活性确保了大多数标准音频文件可以在不需要fr转换的情况下轻松处理。

Whisper是开源的。基于大规模弱监督的鲁棒语音识别:https://github.com/openai/whisper

[大语言模型] Mistral 7B 模型介绍

Mistral人工智能团队很自豪地发布了Mistral 7B,这是迄今为止最强大的语言模型。

Mistral 7B 简述

Mistral 7B是一个7.3B参数模型,它:

  • 在所有基准测试中均超过Llama 2 13B
  • 在许多基准测试中表现超过Llama 1 34B
  • 接近CodeLlama 7B的代码性能,同时保持良好的英语任务
  • 使用分组查询注意力(GQA)进行更快的推理
  • 使用滑动窗口注意力(SWA)以较小的成本处理较长的序列
  • 我们将在Apache 2.0许可证下发布Mistral 7B,它可以不受限制地使用。
  • 下载它并在任何地方(包括本地)使用我们的参考实现,
  • 使用vLLM推理服务器和skypilot在任何云(AWS/GCP/Azure)上部署它,
  • 在HuggingFace上使用。

Mistral 7B很容易在任何任务中进行微调。作为演示,我们提供了一个针对聊天进行微调的模型,它的性能优于Llama 2 13B聊天。

【LangChain】使用LangChain(而非OpenAI)回答有关文档的问题

如何使用Hugging Face LLM(开源LLM)与您的文档、PDF以及网页中的文章进行对话。

最后,这是第一步。我已经到处找了好几个月了。

所有的文章、教程和youtube视频都只教你如何使用OpenAI做事。但老实说,这相当令人沮丧。首先,所有人工智能模型的基础都来自学术界:其次,我不敢相信,当有一个大社区在幕后工作时,我们被迫去做事情。

在这里,我将展示如何在不使用OpenAI的情况下使用免费的Google Colab笔记本与任何文档交互(我将在这里介绍文本文件、pdf文件和网站url)。由于计算的限制,我们将使用Hugging Face API和完全开源的LLM来利用LangChain库与我们的文档交互。

作为指南的简介

我对文本生成背后的技术很感兴趣,作为一名工程师,我想进行实验。但作为一个人和一名教师,我认为了解人工智能的工具和思考工具更重要。

我强烈建议你阅读詹姆斯·普朗基特的精彩文章《论生成人工智能与不自由》。引用他的话:

技术真的是我们经常想象中的中立工具吗?即技术是我们发明然后决定如何使用的东西吗?

【LangChain】与文档聊天:将OpenAI与LangChain集成的终极指南

欢迎来到人工智能的迷人世界,在那里,人与机器之间的通信越来越模糊。在这篇博客文章中,我们将探索人工智能驱动交互的一个令人兴奋的新前沿:与您的文本文档聊天!借助OpenAI模型和创新的LangChain框架的强大组合,您现在可以将静态文档转化为交互式对话。

你准备好彻底改变你使用文本文件的方式了吗?然后系好安全带,深入了解我们将OpenAI与LangChain集成的终极指南,我们将一步一步地为您介绍整个过程。

什么是LangChain?

LangChain是一个强大的框架,旨在简化大型语言模型(LLM)应用程序的开发。通过为各种LLM、提示管理、链接、数据增强生成、代理编排、内存和评估提供单一通用接口,LangChain使开发人员能够将LLM与真实世界的数据和工作流无缝集成。该框架允许LLM通过合并外部数据源和编排与不同组件的交互序列,更有效地解决现实世界中的问题。

我们将在下面的示例应用程序中使用该框架从文本文档源生成嵌入,并将这些内容持久化到Chroma矢量数据库中。然后,我们将使用LangChain在后台使用OpenAI语言模型来查询用户提供的问题,以处理请求。

这将使我们能够与自己的文本文档聊天。

【LLM】微调我的第一个WizardLM LoRA

根据特定用例调整LLM的行为

之前,我写过关于与Langchain和Vicuna等当地LLM一起创建人工智能代理的文章。如果你不熟悉这个话题,并且有兴趣了解更多,我建议你阅读我之前的文章,开始学习。

今天,我将这个想法向前推进几步。

首先,我们将使用一个更强大的模型来与Langchain Zero Shot ReAct工具一起使用,即WizardLM 7b模型。

其次,我们将使用LLM中的几个提示来生成一个数据集,该数据集可用于微调任何语言模型,以了解如何使用Langchain Python REPL工具。在这个例子中,我们将使用我的羊驼lora代码库分支来微调WizardLM本身。

我们为什么要这样做?因为不幸的是,大多数模型都不擅长在Langchain库中使用更复杂的工具,我们希望对此进行改进。我们的最终目标是让本地LLM使用Langchain工具高效运行,而不需要像我们目前需要的那样进行过多提示。

总之,以下是本文的部分: