跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) angular(83) LLM(79) 大语言模型(63) 人工智能(53) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(34) Go基础(29) Python(24) Vue(23) Web开发(20) Web技术(19) 精选资源(19) 深度学习(19) Java(18) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) 安卓(11) 聊天机器人(10) typescript(10) 资料精选(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) ChatGPT(9) LLMOps(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) mlops(9) 安全(9) 全栈开发(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 软件架构(7) RAG(7) Go语言高级开发(7) AWS(7) C++(7) 数据科学(7) 智能体(6) whisper(6) Prisma(6) 隐私保护(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 提示工程(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) kafka(5) 推荐系统(5) WebAssembly(5) GameDev(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) nextjs(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) RAG架构(4) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) 语言模型(2) 可穿戴设备(2) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) 数据分析(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

A curated list of awesome Torch tutorials, projects and communities.

Table of Contents

Tutorials

Model Zoo

Codes and related articles. (#) means authors of code and paper are different.

Recurrent Networks

Convolutional Networks

Reinforcement Learning

  • Deep Q-networkDeepMind-Atari-Deep-Q-Learner
    • Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, Demis Hassabis, Human-Level Control through Deep Reinforcement Learning, Nature, [Paper]
  • Deep Attention Recurrent Q-Network
    • (#) Ivan Sorokin, Alexey Seleznev, Mikhail Pavlov, Aleksandr Fedorov, Anastasiia Ignateva, Deep Attention Recurrent Q-Network, NIPS 2015, [Paper]
  • Grid World DQN using torch7
    • (#) Marc G. Bellemare, Georg Ostrovski, Arthur Guez, Philip S. Thomas, Rémi Munos, Increasing the Action Gap: New Operators for Reinforcement Learning, arXiv:1512.04860, [Paper]
  • Deep Q-Networks for Accelerating the Training of Deep Neural Networks
    • Jie Fu, Zichuan Lin, Miao Liu, Nicholas Leonard, Jiashi Feng, Tat-Seng Chua, Deep Q-Networks for Accelerating the Training of Deep Neural Networks, arXiv:1606.01467, [Paper]
  • ActorMimic
    • Emilio Parisotto, Jimmy Lei Ba, Ruslan Salakhutdinov, Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning, ICLR 2016, [Paper]
  • MazeBase: a sandbox for learning from games
    • Sainbayar Sukhbaatar, Arthur Szlam, Gabriel Synnaeve, Soumith Chintala, Rob Fergus, MazeBase: A Sandbox for Learning from Games, arXiv:1511.07401, [Paper]
  • mario-ai
    • This project contains code to train a model that automatically plays the first level of Super Mario World using only raw pixels as the input (no hand-engineered features).The used technique is deep Q-learning, as described in the Atari paper (Summary), combined with a Spatial Transformer.
  • Deep Successor Reinforcement Learning (DSR)
    • Tejas D. Kulkarni, Ardavan Saeedi, Simanta Gautam, Samuel J. Gershman, Deep Successor Reinforcement Learning, arXiv:1606.02396, [Paper]
  • ViZDoom
    • ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is primarily intended for research in machine visual learning, and deep reinforcement learning, in particular.
  • MIXER - Sequence Level Training with Recurrent Neural Networks
    • Marc'Aurelio Ranzato, Sumit Chopra, Michael Auli, Wojciech Zaremba, Sequence Level Training with Recurrent Neural Networks, ICLR 2016, [Paper]
  • TorchQLearning
    • Implementation of a simple example of Q learning in Torch.
  • rltorch
    • This package is a Reinforcement Learning package written in LUA for Torch.
  • Opponent Modeling in Deep Reinforcement Learning
    • He He, Jordan Boyd-Graber, Kevin Kwok, Hal Daumé III, Opponent Modeling in Deep Reinforcement Learning, ICML 2016, [Paper]

### ETC

Libraries

Model related

  • nn : an easy and modular way to build and train simple or complex neural networks [Code] [Documentation]
  • dpnn : extensions to the nn lib, more modules [Code]
  • nnx : extension to the nn lib, experimental neural network modules and criterions [Code]
  • nninit : weight initialisation schemes [Code]
  • rnn : Recurrent Neural Network library [Code]
  • optim : A numeric optimization package for Torch [Code]
  • dp : a deep learning library designed for streamlining research and development [Code] [Documentation]
  • nngraph : provides graphical computation for nn library [Code] [Oxford Introduction]
  • nnlr : Add layer-wise learning rate schemes to Torch [Code]
  • optnet: Memory optimizations for torch neural networks. [Code]
  • autograd : Autograd automatically differentiates native Torch code. [Code]
  • torchnet: framework for torch which provides a set of abstractions aiming at encouraging code re-use as well as encouraging modular programming [Code] [Paper]

GPU related

  • distro-cl: An OpenCL distribution for Torch [Code]
  • cutorch : A CUDA backend for Torch [Code]
  • cudnn : Torch FFI bindings for NVIDIA CuDNN [Code]
  • fbcunn : Facebook's extensions to torch/cunn [Code] [Documentation]

IDE related

  • iTorch : IPython kernel for Torch with visualization and plotting [Code]
  • Lua Development Tools (LDT) : based on Eclipse [Code]
  • zbs-torch : A lightweight Lua-based IDE for Lua with code completion, syntax highlighting, live coding, remote debugger, and code analyzer [Code]

ETC

  • fblualib : Facebook libraries and utilities for Lua [Code]
  • loadcaffe : Load Caffe networks in Torch [Code]
  • Purdue e-lab lib : A collection of snippets and libraries [Code]
  • torch-android : Torch for Android [Code]
  • torch-models : Implementation of state-of-art models in Torch. [Code]
  • lutorpy : Lutorpy is a libray built for deep learning with torch in python. [Code]
  • CoreNLP.lua : Lua client for Stanford CoreNLP. [Code]
  • Torchlib: Data structures and libraries for Torch. [Code]
  • THFFmpeg: Torch bindings for FFmpeg (reading videos only) [Code]
  • tunnel: Data Driven Framework for Distributed Computing in Torch 7, [Code]
  • pytorch: Python wrappers for torch and lua, [Code]
  • lutorpy: Use torch in python for deep learning., [Code]
  • torch-pcl: Point Cloud Library (PCL) bindings for Torch, [Code]
  • Moses: A Lua utility-belt library for functional programming. It complements the built-in Lua table library, making easier operations on arrays, lists, collections. [Cpde]

Links

原文:https://github.com/carpedm20/awesome-torch