跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) LLM(84) angular(83) 大语言模型(67) 人工智能(56) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(34) Go基础(29) Python(24) Vue(23) Web开发(20) 深度学习(20) Web技术(19) 精选资源(19) Java(19) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) LLMOps(11) 聊天机器人(11) 安卓(11) ChatGPT(10) typescript(10) 资料精选(10) mlops(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) RAG(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) 安全(9) 全栈开发(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 智能体(7) 软件架构(7) Go语言高级开发(7) AWS(7) C++(7) 数据科学(7) whisper(6) Prisma(6) 隐私保护(6) 提示工程(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 生成式AI(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) kafka(5) 推荐系统(5) WebAssembly(5) GameDev(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) nextjs(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) RAG架构(4) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 模型评估(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) 数据分析(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

category

Meta的首席AI科学家Yann LeCun表示,在未来三到五年内,将会出现“AI架构的新范式”,这一新范式将远远超越现有AI系统的能力。

LeCun还预测,未来几年可能是“机器人技术的十年”,AI与机器人技术的进步将结合起来,释放出一种新的智能应用类别。

在周四的达沃斯“技术辩论”环节上,LeCun表示,目前我们所拥有的“AI范式”——即生成式AI和大型语言模型(LLM)——实际上并未达到太多的能力。它们确实有用,但在许多方面仍存在局限。

LeCun说道:“我认为当前[LLM]范式的使用寿命相对较短,可能只有三到五年。我认为五年后,没有人会再把它们作为AI系统的核心组件使用,至少不会像现在这样使用。我认为……我们将会看到一种新的AI架构范式的出现,这种架构可能没有当前AI系统的局限。”

这些“局限”阻碍了机器实现真正智能的行为,LeCun解释道,主要有四个关键原因:缺乏对物理世界的理解;缺乏持久记忆;缺乏推理能力;缺乏复杂的规划能力。

“LLM实际上无法做这些事情,”LeCun说。“所以,在接下来的几年里,AI将会经历另一次革命。我们可能得改变它的名字,因为它可能不再像今天我们理解的那样是生成式的。”

“世界模型”

这与LeCun过去的观点相呼应。其核心是所谓的“世界模型”,这种模型有望帮助机器理解现实世界的动态。这包括拥有记忆、常识、直觉、推理能力——这些特征远远超出了当前系统的能力,而当前系统主要专注于模式识别。

LeCun之前曾表示,这一目标可能还需要10年才能实现,但今天的预测表明,这一目标的实现已不再遥远。尽管在这一时间范围内,能够实现的程度尚不明确。

“LLM擅长操控语言,但不擅长思考,”LeCun说。“所以我们正在做的事情是——让系统建立关于世界的心理模型。如果我们正在进行的计划成功,按照我们希望的时间表,在三到五年内,我们将拥有一种完全不同范式的系统。它们可能拥有一定的常识,能够通过观察世界、甚至与世界互动来学习世界的运作方式。”

“机器人技术的十年”

尽管生成式AI已经非常令人印象深刻,能够通过律师考试或发现新药,但LeCun认为,机器人技术可能成为下一个AI应用浪潮的核心组成部分,尤其是在现实世界的场景中。

Meta自身在机器人领域也有一些研究工作,但目前的AI“宠儿”——ChatGPT的创始公司OpenAI也在这一领域展开研究。就在本月早些时候,OpenAI发布了新的招聘信息,介绍了一个新的机器人团队,专注于开发“通用”、“自适应”和“多功能”的机器人,能够在现实环境中展现类似人类的智能。

“我们没有能够做猫能做的事情的机器人——理解猫的物理世界要比我们现有的AI技术强得多,”LeCun说。“也许接下来的十年将是机器人技术的十年,也许我们会有足够智能的AI系统来理解现实世界的运作。”

文章链接